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ON THE MINIMIZATION OF MULTINOMIAL TAILS
AND THE GUPTA-NAGEL CONJECTURE

ABSTRACT

This paper is primarily concerned with the problem of minimizing the lower tail of the multinomial

distribution. During the study of that specific problem, we have developed an approach which we believe to be

general and useful for solving a wide class of similar problems, even involving multinomial probabilities

represented by tails with “irregular shapes”. Concerning the main problem, we provide a self-contained proof that

the minimum of the multinomial lower tail is actually reached, as conjectured by Shanti S. Gupta and Klaus

Nagel in 1967 within the framework of subset-selection problems, at the equal probability configuration, i.e.,

when the cell probabilities are equal to one another. We also point out some novel inequalities and general

properties involving multinomial probabilities and multinomial coefficients.

Keywords: multinomial distribution, lower tail, best selection, subset selection, indifference-zone selection,
multinomial coefficients, partitions of integer, Pascal triangle, Schur-convex functions

1. INTRODUCTION TO THE PROBLEM

An open problem in the theory of multinomial distribution is the minimization of its lower tail. Apparently, such
a problem is of general interest, since multinomial tails occur in several situations, both in theoretical research
and technological applications. A conjecture, proposed by Gupta and Nagel (1967, p. 9), suggests an answer to
the above important issue, and it claims that the minimum of the multinomial lower tail (and, hence, the
maximum of the complementary upper tail) is obtained when the cell probabilities are equal to one another.

Gupta-Nagel Conjecture (about the minimum of the lower tail of a multinomial distribution).

Given the integers , ,k n r , where 2, 0 , 0k r n n≥ ≤ < > , the function:
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reaches the minimum at the equal probability configuration:
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Remarks
Due to the restriction
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the function [1.1] is the lower tail of the multinomial distribution, and r  is a parameter of amplitude.
For instance, in the binomial case (i.e., when 2k = ), the above tail can be written as:
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It is clear that all the complexity of the minimization problem arises from the constraint [1.4], which restricts the
multinomial cumulative probability to be smaller than 1, and dependent on 

1
,...,

k
θ θ . Also, we may note that, if it

were r n≥ , the constraint [1.4] would be satisfied for any k , n , 
1
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therefore, 
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τ θ θ = . Finally, observe that the assumption 

1
...

k
θ θ≤ ≤  can be, equivalently, replaced

with { }1 1
min , ... ,

k
θ θ θ= , since the multinomial tail [1.1] is symmetrical with respect to 

2
, ... ,

k
n n  and, hence,

the order of 
2
, ... ,

k
θ θ  is, actually, immaterial.

In order to provide an introductory discussion on the Gupta-Nagel conjecture, let us define some notation. We
denote by
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the incomplete Beta function and the Beta function, respectively, and by
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the incomplete beta function ratio, which is linked to the binomial upper tail by the following well-known
relationships (easily obtainable by integrating the incomplete beta [1.6] by parts):
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We  can observe that the binomial lower tail [1.5] can be written as:
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The above integral representation of the binomial lower tail, shows that 
1 1

( ,1 )
r
τ θ θ− is minimized at 

1
1/2θ = ,

and it might also suggest that, in order to solve the general conjecture, we could, as well, try to represent the
multinomial lower tail [1.1] in terms of Dirichlet integrals. This can be done, for instance, through the well-
known expansion of multinomial probabilities obtained by Olkin and Sobel (1965) and Stoka (1966) (cf. also,
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Olkin and Sobel (1972)), which is useful to recall here, as it provides insight on the nature of the difficulties in
solving the Gupta-Nagel conjecture:
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Given the structure of [1.15], minimizing a representation in terms of Dirichlet integrals of the multinomial tail
[1.1], while it is trivial for the binomial case [1.13], was not possible for 2k > . Thus, a new approach appears
necessary to solve the problem, and that is the object of the present article.

The structure of the paper is as follows. Section 2 contains preliminary results. Section 3 contains the main
results, including a novel inequality and a proof of the Gupta-Nagel conjecture. Some discussion is made in
Section 4, where it is pointed out how some of the methods introduced here can be applied to a large class of
problems relevant to the minimization of multinomial probabilities. As an example, a further minimization
problem is proposed. Statistical considerations, historical background and numerical illustrations are contained
in sections 5, 6, 7, respectively.

2. PRELIMINARY RESULTS

Notation: two partitions of the sample space

Given the integers n and k, 0, 2n k> ≥ , we denote by:

                                                      
1,

1

( ,..., ) |
k

k
jn k k

j

S n n Z n n

=

   ≡ ∈ = 
 
  

∑ [2.1]

the sample space of the multinomial distribution, i.e., the set of points having k nonnegative integral coordinates
which sum to n (here Z denotes, as usual, the set of nonnegative integers).

Partition 1
For each integer , 0r r n≤ < , consider the following partition of 

,n k
S  :

                                                                         
, , , , ,n k n k r n k r

S C W= ∪ [2.2]

into two disjoint subsets, 
, ,n k r

C  and 
, ,n k r

W , 
, , , , ,n k n k r n k r

S C W= ∪ , 
, , , ,n k r n k r

C W = ∅∩ , defined as follows:
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Note that the set 
, ,n k r

C  is the part of  
,n k

S  over which the sum of the multinomial lower tail [1.1] is carried out,

while 
, , , , ,n k r n k n k r

W S C= −  is the complement of 
, ,n k r

C  with respect to the sample space 
,n k

S . The reason for

this notation is to comply with the meaning (cf. Section 5 on historical background) of the original problem
dealt with by Gupta and Nagel (subset-selection approach), where these two sets represent the “Correct
Selection” zone and “Wrong Selection” zone, respectively.

Partition 2
Also, let 

0
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n
P P  be the partition of 
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S  into ( 1)n +  mutually disjoint parts defined as:
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(This partition, which separates the configurations with different values of 
1

n , will be useful to express the

multinomial tail in terms of binomial probabilities.)

Results (properties of the partitions)
The properties, of the two above partitions [2.2] and [2.5], which will be established in the following Lemmas 1
and 2, will be used in the next section to build a proof of the Gupta-Nagel conjecture.

Preliminary Remarks
First of all, note that a sequence 
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+
, ( 1) {1,..., }i n+ ∈ , in 

, ,n k r
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n
P ,

since r n<  by assumption, and 
1

n n=  implies 
2,...,
min 0

jj k
n

=

= .

Lemma 1.
Given n and k, 0, 2n k> ≥ , for each r , 0 r n≤ < , it is possible to split the partition [2.5] into two nonempty

sequences:
                                                                  

0 1
( ... ) ( ... )nj j
P P P P

+
∪ ∪ ∪ ∪ , [2.7]

{ }0,..., 1j n∈ − , such that each part in the first sequence 
0

( ... )
j

P P∪ ∪ is a subset of  
, ,n k r

C , i.e.,

                                                            exists j  such that 
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0

j

h n k r
h
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=

⊂∪ . [2.8]

In particular, denoting by 
0
j  the largest integer in {0,..., 1}n −  such that 
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0

j

h n k r
h
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=

⊂∪  holds, while

, ,h n k r
P W ≠ ∅∩  for any 

0
{ 1, ... , }h j n∈ + , we have:

                                                               
0

[ ] 2
2

3

n r
if k

j

r if k

+ = == 
 = ≥

[2.9]
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In other words, we can say that 
0

0
( ... )

j
P P∪ ∪ is the “longest” of the subsequences 

0
( ... )

j
P P∪ ∪ “fully

contained” in 
, ,n k r

C .

Lemma 2.
Given n and k, 0, 2n k> ≥ , for each r , 0 r n≤ < , it is possible to split the partition [2.5] into two nonempty

sequences:
                                                                   

0 1
( ... ) ( ... )ni i
P P P P

+
∪ ∪ ∪ ∪ , [2.10]

( 1) {1,..., }i n+ ∈ , such that each part in the second sequence 
1

( ... )ni
P P

+
∪ ∪ is a subset of 

, ,n k r
W , i.e.,

                                                             exists i  such that 
, ,

1

n

h n k r

h i

P W

= +

⊂∪ . [2.11]

In particular, denoting by 
0
i  the smallest integer in {0,..., 1}n −  such that 

, ,
1

n

h n k r

h i

P W

= +

⊂∪  holds, while

, ,h n k r
P C ≠ ∅∩  for any 

0
{0,..., }h i∈ , we have:

                                      
0

[ ], 2
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3 ( ) ( )

( 1) ( 1)
[ ] ( , , ) [ ] 1
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if k and n k r n ki

n r k n r k
or depending on n k r

k k

if k and n k r n k

+ = = = ≥ < > −= 
 + − + − = = − ≥ ≥ ≤ ≤ −

∪
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[2.12]

and 
0
i  is always between r  and n k− , i.e.,

                                                                             
0

r i n k≤ ≤ − . [2.13]

In other words, we might say that
0

1
( , ..., )ni
P P

+
 is the “longest” of the subsequences 

1
( , ... , )ni
P P

+
 “fully

contained” in 
, ,n k r

W .

Taking into account the symbolic representation provided by Figure 1, can be of help to the reader to visualize
the intuitive meaning of the two lemmas.
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Figure 1
Venn diagram representing the

                                                         results in Lemma 1 and Lemma 2, for 3k ≥

Being uninteresting (and trivial) the case 2k = , the two above Lemmas will be proven only for 3k ≥ .

Proof of Lemma 1.

Assume 
1

0

( ,..., )
r

k h
h

n n P

=

∈ ∪ , 0 r n≤ < . Then,
1

n r≤ , which implies that the condition 
1 2,...,

min
jj k

n n r
=

≤ +

holds a fortiori and, hence, 
1 , ,

( ,..., )
k n k r

n n C∈ . Besides, for any 1h r≥ + , the intersection 
, ,h n k r

P W ≠ ∅∩  is

nonempty, since for each 
1

1

( ,..., )
n

k h

h r

n n P

= +

∈ ∪  where 
2,...,
min 0

jj k
n

=

= , we have 
1 2,...,

min
jj k

n n r

=

> + . Thus

0
( , ... , )

r
P P , is the “longest” sequence of the type 

0
( , ... , )

j
P P , {0,..., 1}j n∈ − , included in 

, ,n k r
C , while

1r
P

+
, has at least one element in common with 

, ,n k r
W .

Proof of Lemma 2.

A1. Consider the case n k< .
Since for any 

1 ,
( ,..., )

k n k
n n S∈ , the '

i
n s  sum to n , the condition ( )n k<  implies that at least one of the

1
,...,

k
n n  is equal to zero: 

1,...,
( ) min 0

j k
n k n

=

< ⇒ = . Therefore, for any 
1

( ,..., )
k h

n n P∈ , 1,...,h n= , we have

1 12,...,
min

jj k
n n n

=

− = . This implies 
0 1 , ,

( ... )r n k r
P P P C⊂∪ ∪ ∪  and 

1 , ,
( ... )nr n k r
P P W

+
⊂∪ ∪ . Thus

0
i r= .

A2. Consider the case ( )r n k> − .

When 
1

n r n k> > − , since it is 
1

k

i

i

n n

=

=∑ , for each
1 ,

( , ... , )
k n k

n n S∈ , the condition 
1

n n k> −  implies that

at least one of the 
2
, ... ,

k
n n  is equal to 0. Hence, 

1 12,...,
min

jj k
n n n r

=

− = >  holds.

This can also be expressed by saying that, for any { 1, ... , 1}r n k n∈ − + − , the sequence of parts

( , ... , )
r n

P P  is included in 
, ,n k r

W , since in each of these parts the condition 
1 2,...,

min ( )
jj k

n n r n k
=

> + > −

holds. Thus 
0
i r= .

Note that, since, by Lemma 1, the union 
0

( ... )
r

P P∪ ∪ , 0 r n≤ < , is included in 
, ,n k r

C , by definition of 
0
i

we have: 
0
i r≥ . On the other hand, since 

1
( , ... , )nn k
P P

− +
 is included in 

, ,n k r
W , we have:

0
i n k≤ − . Therefore:

                                                                               
0

r i n k≤ ≤ − [2.14]

B. Consider the case ( ) (0 )n k r n k≥ ≤ ≤ −∩ .

By the definition of 
0
i , we can write:

                                           0 {1,..., } 2,...,
( 1) min | min

jh n j k
i h h n r

∈ =

   + = > + 
   
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                                                         { }{1,..., }
min | [ ]

1h n

n h
h h r

k∈

−
= > +

−
[2.15]

by denoting 
,

[ ]
u w

u
R u w

w
≡ −  the remainder of the division of u by , 0w w ≠ ,

                                            , 1

{1,..., }
min |

1
n h k

h n

n h R
h h r

k

− −

∈

− −   = > + 
 −  

. [2.16]

From [2.15], since 
, 1

2
n h k

R k
− −

≤ − , we have:

                                      
0

( 1)i +  { }{1,..., }

( 2)
min |

1h n

n h k
h h r

k∈

− − −
≥ > +

−
 

                                                    { }{1,..., }

( 1) ( 2)
min |

h n

n r k k
h h

k∈

+ − − −
= >

                                                    
( 1) ( 2)

[ ] 1 1
L

n r k k

k
α

+ − − −
= + ≡ + . [2.17]

On the other hand, from [2.15], since 
, 1

0
n h k

R
− −

≥ , we have:

                                                   
0

( 1)i +  { }{1,..., }
min |

1h n

n h
h h r

k∈

−
≤ > +

−

                                                                { }{1,..., }

( 1)
min |

h n

n r k
h h

k∈

+ −
= >

                                                                
( 1)

[ ] 1 1
U

n r k

k
α

+ −
= + ≡ + . [2.18]

Therefore
                                                                                 

0L U
iα α≤ ≤ . [2.19]

By observing that 1
U L

α α− < , since
0
i r≥ , we conclude that, depending on n, k, r, either one of the following

must hold:

                                                                        
0 U
i α=     or    

0
1

U
i α= − [2.20]

�

In the next Section, we will propose a proof of the Gupta-Nagel conjecture. Since we make use of the partitions
[2.2] and [2.5] of the set 

,n k
S , we provide some additional observations on them.

Remark 1.2
By combining the results in Lemmas 1 and 2, we have that for 3k ≥ , the set 

,n k
S  can be represented (cf. Figure

1) as a union of 1n +  disjoint parts (cf. Figure 1):

                                            
0 0

0 1 1
... ... ...r nir i

P P P P P P
+ +

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ [2.21]

where the two outer sequences 
0 , ,

( ... )r n k r
P P C⊂∪ ∪ , 

0
1 , ,

( ... )ni n k r
P P W

+
⊂∪ ∪  always exist and are the

longest sequences of 
h

P ’s contained in 
, ,n k r

C  and 
, ,n k r

W , respectively. The inner sequence
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0
1

( ... )
ir

P P
+

∪ ∪ exists if and only if  
0
i r> . When it exists, we have that, for each 

h
P  in that sequence

0
( 1,..., )h r i= + , the two intersections:

, ,
( )

h n k r
P C∩  and 

, ,
( )

h n k r
P W∩ are nonempty .

The part 
,h n k

P S⊂ , where 
1

n  is equal to h, has cardinality, say  | |
h

P , equal to the number of the ordered

partitions of ( )n h−  into exactly ( 1)k −  nonnegative integers. Clearly, the cardinality | |
h

P  is a decreasing

function of h.
The sets 

0
,

r
P P  are, respectively, the largest and the smallest parts of 

,n k
S  which are included in 

, ,n k r
C , while

0
1
, ni

P P
+

 are, respectively, the largest and the smallest parts of 
,n k

S  which are included in 
, ,n k r

W .

When 
0
i r> , the sets 

1 , ,
( )

r n k r
P C

+
∩  and 

0
, ,

( )
i n k r

P C∩  are, respectively, the largest and the smallest

intersections of 
, ,n k r

C  with any of  the 
0

' , 1, ... ,
h

P s h r i= + .

3. MAIN RESULTS

As a first consequence of Lemmas 1 and 2, we are able to establish easily a novel inequality, which bounds
tightly the multinomial tail [1.1] and, hence the corresponding linear combination of Dirichlet integrals
obtainable by [1.15], between two simple binomial tails. The following inequality is of general interest and it
also allows to anticipate that, under some specific conditions, the Gupta-Nagel conjecture holds true, as shown
in Corollary 1.

Theorem 1.
Given , , , 0, 2, 0n k r n k r n> > ≤ < , let 

0
i , be the integer defined in Lemma 2.

We have:

             

1 1
0 0

1

0 0
1

1

1
2,...,

1 1
1 1

0 0
1

,..., 0 01

min

(1 ) (1 )!
...

( , 1) ! ... ! ( , 1)
k

k

k

j
j

j
j k

n r r n i i

nn

k
n n k

n n

n n r

t t dt t t dt
n

B n r r n n B n i i

θ θ

θ θ
≥ ≥

=

=

− −
− − − −

=∑

≤ +

− −

≤ ≤
− + − +

∫ ∫
∑ [3.1]

where the equalities hold when 
0

r i= .

Proof of Theorem 1.

Since by definitions [2.1]-[2.4], we have 
, , , , ,n k r n k n k r

C S W= − , the multinomial lower tail [1.1] can be

represented as:

                                                                 1

0 0
1

1

1
2,...,

1
,..., 1

min

!
...

! ... !

k

k

k

j
j

j
j k

nn

k
n n k

n n

n n r

n

n n

θ θ
≥ ≥

=

=

=∑

≤ +

∑

                                                                  1

, ,

1

1

!
...

! ... !

k

n k r

nn

k

C k

n

n n

θ θ= ∑ [3.2]

or as:

                                                          1

, ,

1

1

!
1 ...

! ... !

k

n k r

nn

k

W k

n

n n

θ θ= − ∑ [3.3]

From [3.2], since by Lemma 1, 
0 , ,

( , ... , )r n k r
P P C⊂  is the “longest” subsequence in 

0 1
( , ... , )

n
P P

−

which is

included in 
, ,n k r

C ,  we have:



9

                                                            1

0

1

1...

!
...

! ... !

k

r

nn

k

P P k

n

n n

θ θ≥ ∑
∪ ∪

[3.4]

                                                

1

1 1

1

1
1

0

1 1
10

(1 )
(1 )

( , 1)

n r r
r

n n n

n

t t dtn

n B n r r

θ

θ θ

−

− −

−

=

− = − =  − + 

∫
∑ [3.5]

On the other hand, from [3.3], since by Lemma 2, 
0

1 , ,
( , ... , )ni n k r
P P W

+
⊂  is the “longest” subsequence in

1
( , ... , )

n
P P which is included in 

, ,n k r
W , we have:

                                                       
0

1

1

1

1...

!
1 ...

! ... !

k

ni

nn

k

P P k

n

n n

θ θ

+

≤ − ∑
∪ ∪

[3.6]

                                                         1 1

01

1 1
11

1 (1 )
n

n n n

n i

n

n
θ θ

−

= +

 = − −  
∑ [3.7]

                                        

1
0 0

0

1 1

1

1
1

0

1 1
1 0 00

(1 )
(1 )

( , 1)

n i i
i

n n n

n

t t dtn

n B n i i

θ

θ θ

−

− −

−

=

− = − =  − + 

∫
∑ [3.8]

Finally, note that when 
0
i r=  the two bounds [3.5] and [3.8] are coincident.

Figure 1 represents clearly the intuitive meaning of the above inequality.
�

Corollary 1.
When 

0
i r=  (and, in particular, under the implying condition ( ) ( )n k r n k< > −∪ ), the Gupta-Nagel

conjecture, holds true.

Proof of Corollary 1 (partial proof of Gupta-Nagel conjecture).
When 

0
i r= , by [3.1], we have that [1.1] is equal to a binomial lower tail, and, hence, is a decreasing function

of  
1 1
, 0 1/kθ θ< ≤ . Besides, by proof of Lemma 2, the condition ( ) ( )n k r n k< > −∪  implies 

0
( )i r= .

�

To complete the proof of the conjecture, it remains to show that it holds also under the conditions 
0
i r> ,

3k ≥ . To this purpose, we present some further results (Lemmas 3 and 4), while Theorem 2 shall complete the
argument.

Lemma 3.
For 3k ≥ , the multinomial lower tail [1.1] is minimized at a point which has necessarily the following form:

                                                                      1 1

1

1 1
( , , ... , )

1 1k k

θ θ
θ

− −

− −

[3.9]

referred to, in the literature, as the slippage configuration.

Proof of Lemma 3.
The result in Lemma 3 is due to Gupta and Nagel (1967) (cf. also, Proschan and Sethuraman (1977) and
Marshall and Olkin (1979)). For self-containedness, we provide the reader with a concise argument. We have:
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                                               1

0 0
1

1

1
2,...,

1 1
,..., 1

min

!
( ,..., ) ...

! ... !
k

k

k

j
j

j
j k

nn

r k k
n n k

n n

n n r

n

n n

τ θ θ θ θ

≥ ≥

=

=

=∑

≤ +

≡ ∑

2

2
1

1

1 2

1
2,

2

1
11 2 22 2

,

1 2 11
1

!
...

(1 )(1 )! ... ! ( )!

k

k j k k
j

j
j

k

k k r

n n n n
kn n

nn j k k
jk kk k

n n l
k

jk jj
j

n nn

nn n n n jj

θ θ
θ θ

θθ

−

−

=

=

−

−

− −∑
−− ∑

−
=− −− −

=

− ==
=

           − ∑     =             −   −  ∑∑ −       

∑
∑

2

2

1
2

...,
k

k

j
j

n

n n r

−

−

=

≥ −

∑

∩

           

22

2,
1

1 ,

1 2

1 2

2

1
2

/(1 )
1

0
1 22 2

,...,

2, 2,1 2 1
1

(1 )!
...

( , 1)! ... ! ( )!

k

j

k

k r
jk j

j k r

k

k

k

j
j

n n l

l

nn

kk k
n n

jk r k rjk j
n n r j

t t dt
n

B l n n ln n n n

θ θ

θ θ

−

−

−

=

=

−

−

−

=

− −∑− ∑
−

−− −

− −− =
≥ − =

−
=

− − +∑−

∫
∑

∑
∩

[3.10]

where we have denoted by 
2,k r

l
−

 the smallest value taken by 
k

n  conditionally on 
1 2
... , , ,

k
n n n k r

−

.

Thus, for fixed 
1 2
...

k
θ θ

−

, the  multinomial lower tail 
1

( ,..., )r k
τ θ θ is minimized when 

k
θ  is minimum, i.e., for

1k k
θ θ

−

= . If 3k > , by setting 
1k k

θ θ
−

=  and iterating for 1,...,( 3)j k= −  times the above argument on the

new renormalized arguments, we complete the proof. �

Remark 3.1 (Decomposition into binomial components)
The reason why we have introduced the partition [2.5] is that, as we shall see, under the slippage configuration,
it allows us to express the multinomial probability as a combination of binomial probabilities. In fact, by
Lemmas 1 and 2, if we compute the multinomial tail at the slippage configuration, we can write the following
“decomposition into binomial components”:

                                                                  1 1

1

1 1
( , , ... , )

1 1r

k k

θ θ
τ θ

− −

− −

                                                            
1

1

, ,

1

1

1

1!

! ... ! 1
n k r

n n
n

C k

n

n n k

θ
θ

−− =   −∑ [3.11]

                                                       
0

, ,

1

1

0

1!

! ... ! 1
h n k r

i n h

h

h P C k

n

h n k

θ
θ

−

=

− =   −∑ ∑
∩

[3.12]

                                               
( )

0

, ,

1 1

20

( )!1
(1 )

! ... !1
h n k r

i

h n h

n h

h P C k

n
n h

hn nk
θ θ

−

−

=

   −   = −    −    
∑ ∑

∩

[3.13]

this is clearly a weighted sum of binomial probabilities, where the weight for the binomial term

1 1
(1 )h n h

n

h
θ θ

−
   −    

 is:

                                                    
( )

, ,

, ,
2

( )!1
( )

! ... !1
h n k r

n k r n h

P C k

n h
q h

n nk −

−

≡

−
∑
∩

,

                                                             
( )

2

1
1

2,...,

,..., 2

,

min

( )!1

! ... !1
k

k

j
j

j
j k

n h
n n k

n n n h

n h r

n h

n nk

=

=

−

= =∑

≥ −

−
=

−
∑ [3.14]
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which we will refer to as a “weight of order h  in the decomposition into binomial components”, and below we
illustrate a mathematical interpretation of 

, ,

( )
n k r
q h .

Also, we denote the ordinary binomial term of order h  by:

                                                              
1 1 1

( ) (1 )h n h

h

n

BinT
h

θ θ θ
−

  ≡ −    

                                                            
1

1 1
1

1

1!

! ... ! 1
h

n n
n

P k

n

n n k

θ
θ

−− =   −∑ [3.15]

Using the above notation, we can finally write our decomposition [3.13] concisely as:

                                                         
0

1 1, ,
0

( ,..., ) ( ) ( )
i

r k n k r h

h

q h BinTτ θ θ θ

=

= ∑ [3.16]

Remark 3.2 (Behavior of the binomial probabilities)

Note that the binomial terms ( )
h

BinT θ , 1,..., 1h n= − , 
1

( 0, ]
k

θ ∈  are increasing for 
h

n
θ <   and decreasing

for 
h

n
θ > , while 

0
( )BinT θ , ( )nBinT θ  are, respectively, decreasing and increasing (cf. Figure 2, in Section 7).

Notation. Relative sum of “central” multinomial coefficients

The weights 
, ,

( )
n k r
q h by definition [3.14] consider a bound h r−  for the minimum frequency 

2,...,
min

jj k
n

=

 which

depends on h  . It might be useful to define a “generalized” form of the weight  
, ,

( )
n k r
q h where h  and the bound

for the minimum frequency are not necessarily linked, and therefore the influence of each argument can be more
easily studied. Therefore, we also introduce the symbol:

                                      
( )

2

1
1

2,...,

, ,
,..., 2

,

min

( )!1
( )

! ... !1
k

k

j
j

j
j k

sum k bound sum h
n n k

n sum n h

n bound

sum h
Genq h

n nk

=

=

−

= =∑

≥

−

≡

−
∑ [3.17]

which we might refer to as a “generalized weight of order h ”, and, clearly, the following “wrapping” relation
holds:

                                                           
, , , ,

( ) ( )
n k r sum k bound
q h Genq h≡ , where ,sum n bound h r= = − . [3.18]

Besides its statistical meaning as weight, the function 
, ,

( )
sum k bound

Genq h  has also an interesting mathematical

interpretation. In fact, for instance when 3k = , the weight 
,3,

( )
sum bound

Genq h is the sum of some (depending on

bound ) “central” coefficients on the row sum h−  of the Pascal triangle divided the sum of the coefficients of
the whole row, i.e., it represents the “relative” sum of some “central” coefficients in the expansion of
( )sum h
x y

−

+ . Similarly, 
, ,

( )
sum k bound

Genq h can be seen as the analogous relative sum of “central” multinomial

coefficients in the expansion of  
1 1

( ... )sum h

k
x x

−

−

+ +  (in this case, we might visualize the extension of the

Pascal triangle as a tetrahedron ( 4k = ), a pentachoron ( 5k = ), or, in general, a ( 1k − )-simplex). Therefore,
the properties of these sum of “central” multinomial coefficients, apart the specific problem we are dealing with,
can be also of general mathematical interest.
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The following Lemma 4 is concerned with the properties of the above weights. These properties will be used to
provide a monotonicity argument for the multinomial tail under the slippage configuration and they can be
useful to solve other similar problems, as shown in section 4.

Lemma 4.
Given , , , 0, 3, 0n k r n k r n> ≥ ≤ < , let 

0
i , 

0
r i n≤ < , be the integer defined in Lemma 2, we have:

A)                                     
, ,

( ) 1
n k r
q h = , for 0, ... ,h r= , [3.19]

B)                                     
, ,

0 ( ) 1
n k r
q h< < , for 

0
1, ... ,h r i= + ,

0
r i< , [3.20]

C)                                    
, ,

( ) 0
n k r
q h = , for 

0
1, ... ,h i n= + , [3.21]

D) Recurrence relation. The following interesting recurrence equation, which links the weight of order h  with
1k +  cells with the weight of same order h  when the number of cells is k , holds:

                   
, ,

(0, )
, 1,

1 1
( ) ( ) ( ) 0 [ ]

1 2
( )

0 [ ]
2

n h

n h u

n u k r

u max h r

n k r

n hk n r
q h if h

uk k
q h

n r
if h

−

−

−

= −

+

−   − + = ≤ ≤    − = 
 += >

∑

[3.22]

E) The weights 
, ,

( )
n k r
q h , 0, ... ,h n=  form a non increasing sequence from 1 to 0, and in particular, for the

central values 
0

1, ... ,h r i= + , 
0

r i< , 
, ,

( )
n k r
q h  is a decreasing function of h .

F) Order transition formula

                                                   
1, , , ,

( 1) ( )
sum k bound sum k bound

Genq h Genq h
+

+ = [3.23]

G) Increase by bound release

                                                        
, , , , 1

( ) ( )
sum k bound sum k bound

Genq h Genq h
−

< [3.24]

For an illustration of all the above relationships, cf. Section 7, Tables 3-6.

Remarks and notation preliminary to the proof of Lemma 4

Remark 3.3
We can write the weight 

, ,

( )
n k r
q h  as follows:

                                                   
( )

, ,

, ,
2

( )!1
( )

! ... !1
h n k r

n k r n h

P C k

n h
q h

n nk −

−

≡

−
∑
∩

[3.25]
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( )

2

1
1

2,...,

,..., 2

,

min

( )!1

! ... !1
k

k

j
j

j
j k

n h
n n k

n n n h

n h r

n h

n nk

=

=

−

= =∑

≥ −

−
=

−
∑ [3.26]

denoted as:

                                                                      
( ) , ,

1
( )

1 n k rn h
SumC h

k
−

≡

−

[3.27]

or equivalently, by observing that
( )

2

( )!1
1

! ... !1
h

n h

P k

n h

n nk
−

−

=

−

∑ , [3.28]

                                               
( )

, ,

, ,
2

( )!1
( ) 1

! ... !1
h n k r

n k r n h

P W k

n h
q h

n nk −

−

= −

−

∑
∩

 [3.29]

                                                     
( )

2

1
1

2,...,

,..., 2

,

min

( )!1
1

! ... !1
k

k

j
j

j
j k

n h
n n k

n n n h

n h r

n h

n nk

=

=

−

= =∑

< −

−

= −

−

∑  [3.30]

denoted as:

                                                                       
( ) , ,

1
1 ( )

1 n k rn h
SumW h

k
−

≡ −

−

[3.31]

Proof of Lemma 4.

A.
Consider expression [3.31]. For  0, ... ,h r= , 

, ,

( ) 1
n k r
q h =  because, by Lemma 1, 

, ,h n k r
P W = ∅∩ .

B.
Assume 

0
1, ... ,h r i= + , 

0
r i< . In such a case, by Lemmas 1 and 2, both sets 

, ,

( )
h n k r

P C∩  and

, ,

( )
h n k r

P W∩  are nonempty, hence by [3.31], [3.27], we have 
, ,

0 ( ) 1
n k r
q h< < .

C.
Consider expression [3.27]. For 

0
1, ... ,h i n= + , 

, ,

( ) 0
n k r
q h =  , because, by Lemma 2, 

, ,h n k r
P C = ∅∩

D. (Recurrence relation)
The following proof is also illustrated Section 7, Tables 1-2.
By [3.29]-[3.31]  we have:
                                                      

, 1, , 1,
( ) ( )n h n h

n k r n k r
k q h k SumW h− −

+ +
= − [3.32]

                                                     
2 1

1

1
1

2,..., 1

,..., 2 1

,

min

( )!

! ... !
k

k

j
j

j
j k

n h

n n k

n n n h

n h r

n h
k

n n
+

+

=

= +

−

+

= =∑

< −

−

= − ∑ [3.33]
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2 1

1

1
1

12,...,

,..., 2 1

,

min

( )!

! ... !
k

k

j
j

j kj k

n h

n n k

n n n h

n h r n h r

n h
k

n n
+

+

=

+
=

−

+

= =∑

< − ∪ < −

−

= − ∑ [3.34]

                                 
2 1

1

1
1

12,..., 2,...,

,..., 2 1

,

min ( ( min ) )

( )!

! ... !
k

k

j
j

c
j jkj k j k

n h

n n k

n n n h

n h r n h r n h r

n h
k

n n
+

+

=

+
= =

−

+

= =∑

< − < − ∩ < −

−

= − ∑

∪

[3.35]

                             

2 21 1

1 1

1 1
1 1

12,..., 2,...,

,..., ,...,2 21 1

, ,

min ( min )

( )! ( )!
( )

! ... ! ! ... !
k k

k k

j j
j j

j jkj k j k

n h

n n n nk k

n n n h n n n h

n h r n h r n h r

n h n h
k

n n n n
+ +

+ +

= =

+= =

−

+ +

= = = =∑ ∑

< − < − ∩ ≥ −

− −
= − +∑ ∑ [3.36]

which will be denoted as follows:

                             
, 1, , 1,

( 1 2 )n h

n k r n k r
k SumW SumW

−

+ +
= − +    [3.37]

We note that, for h r> , the following relationship holds:

                                                        
2 1

1

1
1

2,...,

, 1,
,..., 2 1

,

min

( )!
1

! ... !
k

k

j
j

j
j k

n k r
n n k

n n n h

n h r

n h
SumW

n n
+

+

=

=

+
+

= =∑

< −

−
≡ ∑ [3.38]

                                                 
2

1
1

2,...,

,..., 20

,

min ( )

(( ) )!

! ... !
k

k

j
j

j
j k

n h

n nu k

n n u n h

n h u r

n h n u h

u n n

=

=

−

=

= − =∑

< + −

−  − − =     
∑ ∑ [3.39]

                                                                   
, ,

0

n h

n u k r

u

n h

SumW
u

−

−

=

−  =     
∑ [3.40]

                                                     
, ,

0

( 1) (1 ( ))
n h

n u h

n u k r

u

n h
k q h

u

−

− −

−

=

−  = − −    
∑ . [3.41]

 On the other hand, we have:

                                            
2 1

1

1
1

1 2,...,

, 1,
,..., 2 1

,

( min )

( )!
2

! ... !
k

k

j
j

jk j k

n k r
n n k

n n n h

n h r n h r

n h
SumW

n n
+

+

=

+
=

+
+

= =∑

< − ∩ ≥ −

−

≡ ∑ [3.42]
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2

1
1

2,...,

1

,..., 20

,

( min )

( )!

! ... ! !
k

k

j
j

j
j k

h r

n nu k

n n u n h

u h r n h r

n h

n n u

=

=

− −

=

= − =∑

< − ∩ ≥ −

−
= ∑ ∑ [3.43]

                                             
2

1
1

2,...,

1

,..., 20

,

( min )

(( ) )!

! ... !
k

k

j
j

j
j k

h r

n nu k

n n u n h

u h r n h r

n h n u h

u n n

=

=

− −

=

= − =∑

< − ∩ ≥ −

−  − − =     
∑ ∑ [3.44]

                                               
2

1
1

2,...,

1

,..., 20

,

min

(( ) )!

! ... !
k

k

j
j

j
j k

h r

n nu k

n n u n h

n h r

n h n u h

u n n

=

=

− −

=

= − =∑

≥ −

−  − − =     
∑ ∑ [3.45]

                                                      
1

( )
, ,

0

( 1) ( )
h r

n u h

n u k r

u

n h
k q h

u

− −

− −
−

=

−  = −    
∑ . [3.46]

By substituting [3.41] and [3.46] into [3.37], we obtain:

                         

, 1, , ,
0

1

, ,
0

( ) ( ( 1) (1 ( ))

( 1) ( ) )

n h

n h n h n u h

n k r n u k r

u

h r

n u h

n u k r

u

u n h

n h
k q h k k q h

u

n h
k q h

u

−

− − − −

+ −

=

− −

− −

−

=

≤ −

−  = − − −    

−  + −    

∑

∑
[3.47]

                                                     

0

, ,
0

1

, ,
0

1
( 1) ( )

1

( 1) ( )

( 1) ( )

n h

n h n h u

u

n h

n u h

n u k r

u

h r

n u h

n u k r

u

u n h

n h
k k

u k

n h
k q h

u

n h
k q h

u

−

− −

=

−

− −

−

=

− −

− −

−

=

≤ −

−  = − −     − 

−  + −    

−  − −    

∑

∑

∑
 

[3.48]

                      

1

, , , ,
0 0

( 1) ( ) ( 1) ( )
n h h r

n u h n u h

n u k r n u k r

u u

u n h

n h n h
k q h k q h

u u

− − −

− − − −

− −

= =

≤ −

− −      = − − −         
∑ ∑ [3.49]

if  1h r n h− − < −   (i.e., [ ]
2

n r
h

+
≤ )

                                                      

, ,
max(0, )

( 1) ( )
n h

n u h

n u k r

u h r

n h
k q h

u

−

− −

−

= −

−  = −    
∑ [3.50]

Therefore, we can conclude:
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, ,

max(0, )
, 1,

( 1) ( ), 0 [ ]
2

( )

0, [ ]
2

n h

n u h

n u k r
n h u h r

n k r

n h n r
k q h if h

u
k q h

n r
if h

−

− −

−
− = −

+

−   + = − ≤ ≤    = 
 + = >

∑

[3.51]
�

E. Order transition formula

                                         
( )

2

1
1

2,...,

, ,
,..., 2

,

min

( )!1
( )

! ... !1
k

k

j
j

j
j k

sum k bound sum h
n n k

n sum n h

n bound

sum h
Genq h

n nk

=

=

−

= =∑

≥

−
≡

−
∑ [3.52]

If we consider the two sets:

                                                  
2 2,...,

1

( , , ... , ) | , min
k

j jk j k
j

h n n n sum n bound
=

=

   = ≥ 
   

∑ [3.53]

                                             
2 2,...,

1

( 1, , ... , ) | 1, min
k

j jk j k
j

h n n n sum n bound
=

=

   + = + ≥ 
   

∑ [3.54]

a one-to-one mapping can by established 
2 2

( , , ... , ) ( 1, , ... , )
k k

h n n h n n⇔ +  and [3.52] can be written as:

                                                    
( )

2

1
1

2,...,

,..., 2

1, 1

min

( )!1

! ... !1
k

k

j
j

j
j k

sum h
n n k

n sum n h

n bound

sum h

n nk

=

=

−

= + = +∑

≥

−
=

−
∑ [3.55]

                                        
( )

2

1
1

2,...,

( 1) ( 1)
,..., 2

1, 1

min

(( 1) ( 1))!1

! ... !1 k

k

j
j

j
j k

sum h
n n k

n sum n h

n bound

sum h

n nk

=

=

+ − +

= + = +∑

≥

+ − +
=

−
∑ [3.56]

                                                     
1, ,

( 1)
sum k bound

Genq h
+

= + [3.57]

�

F. Increase by bound release
                                                                            

, , ,

( )
n k sum bound

Genq h

                                                             
( )

2

1
1

2,...,

,..., 2

,

min

( )!1

! ... !1
k

k

j
j

j
j k

n h
n n k

n sum n h

n bound

n h

n nk

=

=

−

= =∑

≥

−
≡

−
∑ [3.58]

since  
2,..., 2,...,

( min ) ( min 1)
j jj k j k

n bound n bound
= =

≥ ⇒ ≥ − , i.e.  the condition 
2,...,
min

jj k
n bound

=

≥  is more stringent

than 
2,...,
min 1

jj k
n bound

=
≥ − , we have:
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2 2,...,

2

( , , ... , ) | , min
k

j jk j k
j

h n n n sum h n bound
=

=

   = − ≥ 
   

∑

                                              
2 2,...,

2

( , , ... , ) | , min 1
k

j jk j k
j

h n n n sum h n bound
=

=

   ⊂ = − ≥ − 
   

∑

and therefore:

                                                        
( )

2

1
1

2,...,

,..., 2

,

min 1

( )!1

! ... !1
k

k

j
j

j
j k

n h
n n k

n sum n h

n bound

n h

n nk

=

=

−

= =∑

≥ −

−
>

−
∑ [3.59]

                                                                      
, , , 1

( )
n k sum bound

Genq h
−

≡

�

G. Weight Sequence monotonicity
In points A) B) C) we have seen that the weights 

, ,

( )
n k r
q h  are always in [0,1], and, in particular, they are equal

to 1 for 0, ... ,h r=  and equal to 0 for 
0

1, ... ,h i n= + . We show now that, for any intermediate value

0
1,...,h r i= + , 

0
r i< , the sequence of weights 

, ,

( )
n k r
q h  is decreasing.

We have:
                                                                       

, , , ,

( ) ( 1)
n k r n k r
q h q h− + [3.60]

                
( ) ( )

2 2

1 1
1 1

2,..., 2,...,

( 1)
,..., ,...,2 2

, , 1

min min ( 1)

( )! ( ( 1))!1 1

! ... ! ! ... !1 1k k

k k

j j
j j

j jj k j k

n h n h
n n k k

n n n h n h

n h r h r

n h n h

n nk k ν ν

ν ν

ν

ν ν

= =

= =

− − +

= = = = +∑ ∑

≥ − ≥ + −

− − +
= −

− −
∑ ∑

[3.61]

                           
( ) ( )

, , 1 , ,

( 1)
2 2

( )! ( ( 1))!1 1

! ... ! ! ... !1 1
h n k r h n k r

n h n h
P C P Ck k

n h n h

n nk k ν ν

+

− − +

− − +
= −

− −
∑ ∑
∩ ∩

[3.62]

For any h  and any integer 0release ≥ , let us denote by

                               
2, , , , 2,...,

2

( , ,..., ) | , min
k

j jn k r h release k h j k
j

R h n n P n n h n h r release
=

=

   ≡ ∈ = − ≥ − − 
   

∑ [3.63]

Note that 
, , , ,n k r h release

R  is a possibly augmented version of 
, ,h n k r

P C∩  where, in case there is a positive release of

the bound h r− , the configurations are a larger number:

                                                                         
, , , , , ,n k r h release h n k r

R P C⊃ ∩ , [3.64]

and, in particular,
                                                                           

, , , , 0 , ,n k r h h n k r
R P C= ∩ . [3.65]

With the above notation, we can write [3.62] as:
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( )

( )

2 , ,

2 , , , 1, 0

2( , ,..., )

( 1)
2( 1, ,..., )

( )!1

! ... !1

( ( 1))!1

! ... !1

k h n k r

k n k r h

n h

h n n P C k

n h
h R k

n h

n nk

n h

k
ν ν

ν ν

+

−

∈

− +

+ ∈

−
=

−

− +
−

−

∑

∑

∩

[3.66]

Consider the two sets:

                              
2, , , , , , 0 2,...,

2

( , ,..., ) | , min
k

j jh n k r n k r h k h j k
j

P C R h n n P n n h n h r
=

=

   = ≡ ∈ = − ≥ − 
   

∑∩ [3.67]

                  
2, , , 1, 1 2,...,

2

( 1, ,..., ) | ( 1), min ( 1)
k

j jn k r h release k h j k
j

R h P n h h r releaseν ν ν ν
+ +

=
=

   ≡ + ∈ = − + ≥ + − − 
   

∑

[3.68]

over which the two sums are carried out. Note that for 
0

1,...,h r i= + , 
0

r i< , by Lemmas 1-2, the set

, ,

( )
h n k r

P C∩  is not empty. Then consider any 0release ≥ . Since, to any configuration 
2 , ,

( , ,..., )
k h n k r

h n n P C∈ ∩ ,

it might correspond a configuration 
2 , , , 1,

( 1, 1,..., )
k n k r h release

h n Rν
+

+ − ∈  and vice versa, it is possible to

establish a one-to-one correspondence between a subset of 
, ,

( )
h n k r

P C∩  and a subset of 
, , , 1,n k r h release

R
+

:

                                             
2 3 2 3 2 3

( , , ,..., ) ( 1, , ..., ) ( 1, 1, ,..., )
k k k

h n n n h h n n nν ν ν⇔ + = + − [3.69]

  With respect to the above correspondence, let us denote by 
, , , 1,

( )
bw n k r h release
I R

+
 the image of 

, , , 1,n k r h release
R

+
 in

, ,

( )
h n k r

P C∩  and by 
, ,

( )
fw h n k r

I P C∩  the image of 
, ,

( )
h n k r

P C∩  in 
, , , 1,n k r h release

R
+

. Note that, if we increase

release  enough, it is possible to obtain a coincidence between 
, , , 1,

( )
bw n k r h release
I R

+
 and the whole set

, ,

( )
h n k r

P C∩ . In particular, given [3.69], it is necessary to take 1release > , while

, , , 1, , ,
( ) ( )

bw n k r h release h n k r
I R P C

+
⊂ ∩  for 0,1release = . Then, assume 1release > and let us denote by

, , , 1,n k r h release
SubR

+
 the subset of configurations in 

, , , 1,n k r h release
R

+
 which are in a one-to-one correspondence with

, ,

( )
h n k r

P C∩ . We have:
, , , , , 1, , , , 1,1 , , , 1,0 1 , ,

( ) ( )
fw h n k r n k r h release n k r h n k r h h n k r

I P C SubR R R P C
+ + + +

= ⊃ ⊃ ≡∩ ∩ .

Therefore, we can write [3.66] as:

                                            
( )

( )

2 , ,

2 , ,

2( , ,..., )

( 1)
2( 1, ,..., ) ( )

( )!1

! ... !1

( ( 1))!1

! ... !1

k h n k r

k fw h n k r

n h

h n n P C k

n h
h I P C k

n h

n nk

n h

k
ν ν

ν ν

−

∈

− +

+ ∈

−
>

−

− +
−

−

∑

∑

∩

∩

[3.70]

                            
( ) ( )

, ,

( 1)
2 2

( )! ( ( 1))!1 1
( )

! ... ! ( 1)! ... !1 1
h n k r

n h n h
P C k k

n h n h

n n n nk k
− − +

− − +
= −

−− −
∑
∩

[3.71]

                  
( ) ( )

2 2

1 1
1 1

2,..., 2,...,

1
,..., ,...,2 2

, ,

min min

( )! ( 1)!1 1

! ... ! ( 1)! ... !1 1
k k

k k

j j
j j

j j
j k j k

n h n h
n n n nk k

n n n h n n n h

n h r n h r

n h n h

n n n nk k

= =

= =

− − −

= = = =∑ ∑

≥ − ≥ −

− − −

= −

−− −

∑ ∑

                      [3.72]



19

                    
( ) ( )

2 2

1 1
1 1

2,..., 2,...,

,..., ,...,2 2

, ,

min min

( 1)( )! ( )!1 1

! ... ! ! ... !1 1
k k

k k

j j
j j

j j
j k j k

u

n h n h
n n n nk k

n n n h n n n h

n h r n h r

k nn h n h

n n n h n nk k

= =

= =

− −

= = = =∑ ∑

≥ − ≥ −

−− −
= −

−− −
∑ ∑

by simmetry, for any {2,..., }u k∈ . Hence:

      
( ) ( )

2 2

1 1
1 1

2,..., 2,...,

,..., ,...,2 2

, ,

min min

( 1)( )! ( )!1 1 1

1 ! ... ! ! ... !1 1
k k

k k

j j
j j

j j
j k j k

u

n h n h
n n n nk k

n n n h n n n h

n h r n h r

k nn h n h

k n n n h n nk k

= =

= =

− −

= = = =∑ ∑

≥ − ≥ −

         −  − −  = −  − −− −            

∑ ∑
2

k

u=



∑

                           
( )

2

1
1

2,...,

,..., 22

,

min

( 1)( )!1 1
(1 ) 0

1 ! ... !1
k

k

j
j

j
j k

k
u

n h
n nu k

n n n h

n h r

k nn h

k n n n hk

=

=

−
=

= =∑

≥ −

         −  −  = − =  − −−            

∑ ∑

Therefore, for 
0

1,..., 1h r i= + − , we have:

                                                                   
, , , ,

( ) ( 1)
n k r n k r
q h q h> + [3.73]

�

Remark 3.5. One might note that the proof of weight sequence monotonicity discloses a surprising property of
the relative sums of “central” multinomial weights. The central coefficients in the expansion 

1 1
( ,..., )sum h

k
x x

−

−

and the corresponding extended set (which we might call a “forward image”) which contains, as subset, the
central coefficients in the expansion ( 1)

1 1( ,..., )sum h

k
x x

− +

−
 have equal relative sums.

At this point, for analogy, one could ask: if we consider the central coefficients in the expansion

1 1
( ,..., )sum h

k
x x

−

−

, do the corresponding coefficients in the expansion ( 1)
1 1( ,..., )sum h

k
x x

− −

−
 have also equal

relative sums? And, since the answer for the “forward image” is affirmative, one could expect that also the
“backward image” would have the same property. However, it can be noted that such a property does not hold
(see for instance Table 9, in Section 7, where the  coefficients in the expansion ( 1)

1 1( ,..., )sum h

k
x x

− −

−

corresponding  to those  in the expansion 
1

( ,..., )sum h

k
x x

−  have a smaller relative sum).

Finally, in order to complete the proof of the Gupta-Nagel conjecture, it is necessary to show that the
multinomial tail [1.1], with 

2
...

k
θ θ= = , is a strictly decreasing function of 

1
θ , also under the conditions

0
0 , 3r i k≤ < ≥ .
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Theorem 2.
Given the integers 

0
, , , 0, 3, 0n k r n k r i> ≥ ≤ < , the multinomial tail under the slippage configuration:

                                                                     1 1

1

1 1
( , , ... , )

1 1r

k k

θ θ
τ θ

− −

− −

[3.74]

is decreasing with respect to 
1
θ , 

1

1
(0, ]

k
θ ∈ .

Proof of Theorem 2.
Assume 

0
0, 3, 0n k r i> ≥ ≤ < .

Let us start from our decomposition into binomial components:

                                                                    

0

1 1, ,
0

( ,..., ) ( ) ( )
i

r k n k r h

h

q h BinTτ θ θ θ

=

= ∑ [3.75]

A study of the monotonicity of the above weighted sum of binomial probabilities is carried out by partitioning

the interval 
1

(0, ]
k

 into disjoint subintervals 
1

1
( , ]
i i

n n
θ

+
∈ of length 

1

n

 and by comparing the above sum with

the ordinary binomial tail:

                                                                                
0

1

0

( )
i

h

h

BinT θ

=

∑ . [3.76]

As to the ordinary binomial tail, since it is decreasing, for any 
1

1
(0, ]

k
θ ∈ , we have:

                                            

1
0 0

0

1
1

0

1

0 01 10

(1 )
( ) 0

( , 1)

n i i
i

h

h

t t dt

BinT
B n i i

θ

δ δ
θ

δθ δθ

−

− −

=

−

= <
− +

∫
∑  [3.77]

Hence, for 
0

r i< , we can write:

                                                     
0

1 1

1 10 1

( ) ( )
ii

h h

h i

BinT BinT
δ δ

θ θ
δθ δθ

= +

− >∑ ∑ [3.78]

for each 
0

0 i i≤ ≤ .

By Remark 3.2, the components 
0 1 1
( ),..., ( )

i
BinT BinTθ θ  are decreasing in the subinterval 

1
( , ]
i i

n n

+
, i.e.,

0 1 1

1 1

( ) 0, ... , ( ) 0
i

BinT BinT
δ δ

θ θ
δθ δθ

< < , and by Lemma 4, 
, , , ,

0 (0) ... ( )
n k r n k r
q q i> ≥ ≥ , hence we have:

                                                             
1 , ,

1 0

( ) ( )
i

h n k r

h

BinT q h
δ

θ
δθ

=

− ∑

                                                               
1, ,

10

( ) ( )
i

n k r h

h

q h BinT
δ

θ
δθ

=

 = −   
∑ [3.79]

                                                                
1, ,

10

( ) ( )
i

n k r h

h

q i BinT
δ

θ
δθ

=

 ≥ −   
∑     [3.80]

                                                         
1, ,

10

( ) ( )
i

n k r h

h

q i BinT
δ

θ
δθ

=

  = −   
∑ [3.81]
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1, ,

10

( 1) ( )
i

n k r h

h

q i BinT
δ

θ
δθ

=

  ≥ + −   
∑ [3.82]

by [3.78]

                                                           
0

1, ,
11

( 1) ( )
i

n k r h

h i

q i BinT
δ

θ
δθ

= +

> + ∑ [3.83]

Since in 
1

( , ]
i i

n n

+
all the components 

0
1 1 1
( ),..., ( )

ii
BinT BinTθ θ

+
 are increasing, i.e.,

0
1 1 1

1 1

( ) 0, ..., ( ) 0
ii

BinT BinT
δ δ

θ θ
δθ δθ+

> >  and, by Lemma 4, 
0, , , ,

0 ( 1) ... ( )
n k r n k r
q i q i≥ + ≥ ≥ , we can

write:

                                                                
0

1, ,
11

( ) ( )
i

n k r h

h i

q h BinT
δ

θ
δθ

= +

≥ ∑ [3.84]

                                                              
0

1 , ,
1

( ) ( )
i

h n k r

h r i

BinT q h
δ

θ
δθ

= +

= ∑ . [3.85]

Thus, for 
0

r i< , we have:

                          
0

1

1 1, , , ,
1 10

( ) ( ) ( ) ( )
ii

r h n k r r h n k r

h h i

BinT q r h BinT q r h
δ δ

θ θ
δθ δθ

−

+ +

= =

− + > +∑ ∑ . [3.86]

Therefore, in each subinterval 
1

1
( , ]
i i

n n
θ

+
∈ , we have:

                                                                   1 1

1

1

1 1
( , , ... , )

1 1r

k k

θ θδ
τ θ

δθ

− −

− −

                               
0

1

1 1, , , ,
1 0

( ) ( ) ( ) ( )
i ri

r h n k r r h n k r

h h i

BinT q r h BinT q r h
δ

θ θ
δθ

−−

+ +

= =

  = + + +   
∑ ∑ [3.87]

                                    

1

0

1
1

0
1 , ,

1 1

(1 )
( ) ( ) 0

( , 1)

n r r
i

h n k r

h r

t t dt
BinT q h

B n r r

θ

δ
θ

δθ

−
− −

= +

  −   = + <  − +   

∫
∑ [3.88]

�

Having proven that, in each subinterval of 
1

1
(0, ]

k
θ ∈ , the continuous function [3.30] is decreasing, Corollary 1,

Lemma 3 , and Theorem 2 complete the proof of the Gupta-Nagel conjecture.
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4. DISCUSSION

We may note that, in the proof of Theorem 2, we have used the fact that the sequence of the weights

, ,

( ) '
n k r
q h s in the decomposition into binomial components is nonincreasing, and not the actual values of the

, ,

( ) '
n k r
q h s . This means that the method we have employed here for the Gupta-Nagel conjecture is general, and it

could be applied to minimize several “variations” of the multinomial tail [1.1], even with “irregular shapes”. It
is sufficient that Lemma 3 holds (the slippage configuration is quite common in multinomial problems) and that
the relative sums of multinomial coefficients contained in the intersections 

, ,

( )
h n k r

P C∩ , say 
, ,

* ( )
n k r

q h ,

0,...,h n=  (i.e., the weights assigned to the “binomial components” forming the tail), are a nonincreasing

sequence, from 
, ,

* (0) 1
n k r

q =  to 
, ,

* ( ) 0
n k r

q n =  (in other words, the tail includes the leading decreasing term

(1 )nθ−  and excludes the increasing term n

θ ).

With the help of Figure 1, we may observe that a sequence of sets 
, ,

( )
h n k r

P C∩ , 0,...,h n= , which gives rise

to monotonic weights 
, ,

* ( )'
n k r

q h s , can be chosen in 
,n k

S  in a number of ways and “shapes” 
, ,

0

( )
n

h n k r

h

P C

=

∩∪  in

,n k
S . The class of all possible the above multinomial sums describes an entire family of  “multinomial tails”, to

which the argument developed here can be extended.

Example of minimization of another multinomial tail

Denote:
                                                          

, ,

' ( , ) 1
n k r

q h δ ≡ , for 0,...,h r= [4.1]

                                                          
, ,

'
, ,

( , )
n k r n k

q h Genq
δ

δ ≡ , for h r> [4.2]

and

            1
1

1
1,

0

1
( ) (1 )

( , 1)
n r r

r
Eq t t dt

B n r r

θ

δ
τ θ

−

− −


≡ − − +

∫  1

0 0
1

1

2,...,

1
,..., 1

min

!
...

! ... !

k

k

k

i
i

j
j k

nn

k
n n k

n n

n

n

n n

δ

θ θ
≥ ≥

=

=

=∑

≥

+ 
∑

                                                    
, ,

'

1

0 2

( , ) (1 )
n k r

k

h n h

i

h i

n h
q h

h
δ θ θ

−

≥ =

−  = −  
∑ ∑ [4.3]

a particular tail, which we might refer to as “ δ -equidistant-fromLevel-r tail” (as, for h r> , the weights

, ,

' ( , )
n k r

q h δ do not depend on h ). In intuitive terms, the above lower tail, where the lower bound on the minimum

frequency is constantly equal to δ , can be intuitively imagined as a multinomial lower tail which, “in its upper
end” (precisely, forh r> ), “follows” at distance δ , the “shape” of the border of the sample space 

,n k
S . In case

0δ =  it is equal to 1, while, for δ  sufficiently large (
1

n k

k
δ

− 
>  

− 
), it is coincident with the probability of 

1
n

being less than or equal to r :

                                                                   
1 1,

( ) ( ) 1
r

prob n r Eq
δ

τ θ≤ ≤ ≤ . [4.4]

As to the weights of this tail, for h r> , applying the same argument used in proof of Lemma 4.G we have:

                                                                         ' '
, , , ,

( ) ( 1)
n k r n k r
q h q h≥ + [4.5]
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Therefore, we can conclude that also the “ δ -equidistant-fromLevel-r tail” is minimized by the equal probability

configuration. Such result is somehow “more stringent” than the conjecture by Gupta and Nagel, in the sense

that the decrease rate of this tail is comprised between the ordinary binomial tail and the tail considered by

Gupta and Nagel (cf. Table 10 in section 7).

5. HISTORICAL BACKGROUND ON THE GUPTA-NAGEL CONJECTURE

The two main approaches to selection and ranking problems are commonly referred to as the indifference-zone

approach and the subset-selection approach. Comprehensive bibliography and explanations on these two

different approaches to selection procedures can be found, for instance, in Gupta and Panchapakesan (1985).

Leading research is carried out by P. Chen (cf. for instance, P. Chen (1985), (1986)). For the problem of

selection of the least likely event, under the indifference-zone approach, an older reference can be made to Alam

and Thompson (1972), while, for the problems of selecting the most probable event under the indifference-zone

approach and under the subset-selection approach, Bechhofer, Elmaghrabi, and Morse (1959) and to Gupta and

Nagel (1967), can be considered, respectively.

Gupta and Nagel's subset-selection procedure for the least probable multinomial event (or cell) is as follows:

1
     min{ ,..., }ni i

Select the cell with observed x iff x x x r
α

≤ +

where
1
,...,

k
n n  is the observed sample from a multinomial distribution with cell probabilities 

1
, ...,

k
θ θ  and r

α
is

the smallest non-negative integer such that we have a probability of a correct selection greater than or equal to a

prespecified constant α . Gupta and Nagel (1967, p.1) define a correct selection as the selection of any subset of

the k cells which contains the cell with the smallest probability (also specifying that “in the case of a tie, one of

the cells with the smallest value is considered “tagged” and the selection is correct if  this “tagged” cell is in the

selected subset”). The probability of a correct selection (PCS) of the subset of cells with Gupta-Nagel's selection

procedure is given by Gupta and Nagel (1967) as the multinomial tail [1.1], where, in case of ties,

i.e.,
1 1

... ,
h

θ θ θ= = denotes the probability corresponding to the “tagged” cell.

 In order to carry out Gupta and Nagel's subset selection procedure, it is, therefore, necessary to know the

specific configuration * *

1
, ...,

k
θ θ  which minimizes the PCS, referred to as the least favorable configuration

(LFC).

In the literature, similar problems are often solved by the following two-step method:

1. Given  
1
θ  (or 

k
θ , in problems of selection of the most probable event), find the configuration of the cell-

probabilities which minimizes the PCS,  2. Determine the minimizing value of 
1
θ  (or 

k
θ ). Typically, in step 1

properties of families of distributions parameterized to preserve Schur-convexity are used (see, for instance,

Proschan and Sethuraman (1977), pp.1-2), while step 2 is usually carried out through a monotonicity result. In

fact, it is common that the probability of a correct selection is a Schur-concave function after some conditioning,

and a second step is usually necessary to remove the conditioning (cf. Marshall and Olkin (1979), pp. 396-400).
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Such a two-stage method was essentially used, for instance, by Bechhofer, Elmaghrabi, and Morse (1959) and

by Alam and Thompson (1972), for the determination of the LFC for selecting the least probable and the most

probable multinomial event, respectively, under the indifference-zone approach. Gupta and Nagel (1967) also

employed this method to derive the LFC for selecting the least probable multinomial event under the subset-

selection approach. In particular, they implicitly proved that the PCS is a Schur-concave function of 
2
, ...,

k
θ θ if

1
θ  is fixed, so that the LFC for this problem is the so-called “slippage” configuration [3.8]. They also

conjectured (1967, p. 9) that the LFC is the equal probability configuration.

6. A STATISTICALLY INTUITIVE ARGUMENT

After having recalled the origin of the problem, it can be interesting to provide also an intuitive argument which

resorts to the original meaning, as provided by S. Gupta, of the objective function, and that could be used as an

informal justification of the conjecture. Recall the statistical meaning of the problem. We are looking for the

least favorable configuration, that is the configuration of cell probabilities which minimizes the probability of a

correct selection (PCS). An intuitive explanation might consist of two observations.

Observation 1. Since this probability is a continuous function symmetrical with respect  to 
2
,...,

k
θ θ , it is

intuitive that a solution has the form 1 1

1

1 1
( , , ... , )

1 1k k

θ θ
θ

− −

− −

(the so called slippage configuration). In fact, for

each given 
1
θ , if a configuration 

1
( ,..., ,..., ,...)

BA
θ θ θ  minimizes the PCS, by symmetry, also

1
( ,..., ,..., ,...)

B A
θ θ θ does it. This might justify the above slippage configuration (Gupta and Nagel, 1967).

Observation 2. Having guessed that the minimum is reached at the slippage configuration and bearing in mind

the symmetry of the probability of making a correct selection, let us now view such a probability as a function

of 
1
θ . Take for instance r = 0 (but the observation could be made for any positive r). Being 

1
θ  the smallest

probability and 
1

n  the corresponding frequency, a correct selection occurs when there are no “transgressions”

(to what is most probable to happen, i.e.,  that 
1

n  be less than all other frequencies) such as 
1 2

n n>  or 
1 3

n n> ,

and so on. Of course, it should be evident that the probability of such a “transgression” is 0 when 
1

0θ =

(because 
1

n  will always be 0), and it is intuitive that it will be increasing as 
1
θ  increases, because the distance

between 
1
θ  and the other probabilities is reduced, and the chance that one of the corresponding frequencies

might occur to be less than 
1

n  becomes more probable. Thus, it should be intuitive that by increasing 
1
θ , also

increases the chance that a “transgression” will occur, and that a wrong selection is made.
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7. A SPECIFIC ILLUSTRATION OF THE PROOF

The Reviewers of this paper have kindly requested an illustration of the proof for a specific case, with

20, 5, 2n k r= = = . This section contains such an illustration and aims to provide some further insight on

intuitive aspects of the methods employed.

Lemmas 1, 2 are straightforward, Lemma 3 is due to Gupta-Nagel (1967). We shall illustrate Theorem 2,

emphasizing its conceptual aspects, and will provide numerical illustration of results in Lemma 4.

Illustration of Theorem 2

 Under the known settings, in Theorem 2, we wish to minimize:

1

1

20,5,2

20

1

52 1 1

51 2 3 4

120!
( ,..., )

! ! ! ! ! 1

n
n

C
n n n n n k

θ
τ θ θ θ

−− ≡   −∑

where
5

5
5 520,5,2 1 1 2

1

( ,..., ) | 20 and min{ ,..., } 2
j

j

C n n Z n n n n

=

   ≡ ∈ = ≤ + 
   

∑

(this is the subset of samples which lead to a “correct selection”).

If we view the set  
20,5,2

C  as partitioned with respect to the values of 
1

n , we can write the above sum as a

“decomposition into binomial components”:
01

1

0 1 2 20,5,2

20

1 1

52 1 1 1

5 51 2 3 4 3

1 120! !
( ,..., )

! ! ! ! ! 4 ! ... ! 4
h

in n h
n h

P P P h P C

n

n n n n n h n

θ θ
τ θ θ θ θ

− −

=

− −     = +       ∑ ∑ ∑
∪ ∪ ∩

where

                                          
5

5
51 1

1

( ,..., ) | 20 and , 0,...,20
ih

i

P n n Z n n h h

=

   ≡ ∈ = = = 
   

∑ .

Here we have split the decomposition into two parts. In the first part, the sets 
h

P  are taken entirely because, by

Lemma 1, their points are all included in the correct-selection zone 
20,5,2

C  (cf. Fig. 1), hence the summands will

be the ordinary binomial probabilities. In the second sum, the sets 
h

P  are taken partially because not all their

configurations are in 
20,5,2

C . The 
51

( ,..., )n n  with 
01

n i>  are not included in the decomposition because, by

Lemma 2, we know that they are excluded from the correct-selection zone 
20,5,2

C  (cf. Fig. 1).

Applying Lemma 2, we find that 
0

5i = . Thus, we can write:

       
20,5,2

2 5

20 20

52 1 1 1 1 120

520 3

20 20(20 )!1
( ,..., ) (1 ) (1 )

! ... !4
h

h h h h

h

h h P C

h

h hn n
τ θ θ θ θ θ θ

− −

−

= =

    −     = − + −            
∑ ∑ ∑

∩

and, denoting by 
20,5,2

20,5,2 20
52

(20 )!1
( )

! ... !4
h

h

P C

h
q h

n n−

−

≡ ∑
∩

 the weights of the binomial terms in the second sum,

                                      
2 5

1 1 1 1, ,
0 3

(1 ) ( ) (1 )h n h h n h

n k r

h h

n n

q h
h h

θ θ θ θ
− −

= =

      = − + −         
∑ ∑



26

for more clarity, let us denote the binomial terms 
1 1

(1 )h n h
θ θ

−

−  with 
1

( )
h

BinT θ

                                                  
2 5

1 20,5,2 1
0 3

( ) ( ) ( )
h h

h h

BinT q h BinTθ θ

= =

= +∑ ∑

or, considering that for 0,1,2h =  we have 
20,5,2

( ) 1q h = ,

                                                                      =
5

20,5,2 1
0

( ) ( )
h

h

q h BinT θ

=

∑  [7.1]

where 
20,5,2

0 ( ) 1q h< < , for 
0

1, ... ,h r i= + ,
0

r i< . In particular, exact computations yield the following

values:

20,5,2
( ) 1q h = , for 0,1,2h = ,

20,5,2
(3) 0,969977988861501q = ,

20,5,2
(4) 0,753139955922961q = ,

20,5,2
(5) 0,231012515723705q = ,

20,5,2
( ) 0q h =  for 6,...,20h = ,

We wish to show that the sum [7.1], where some summands ( 3,4,5h = ) are weighed, is a decreasing function

of 
1

1
(0, ]

k
θ ∈ .

The intuition beyond the proof is as follows. We compare term by term above sum [7.1] with the following sum
(ordinary binomial tail):

                                                                       
5

1

0

( )
h

h

BinT θ

=

∑ [7.2]

which we know to be decreasing in 
1

1
(0, ]

k
θ ∈  (cf. [1.13]).

To do the comparison we split the interval 
1

1
(0, ]

k
θ ∈  into subintervals, each of which has length 

1

n

and

compare the two sums in each of such subintervals.

In a generic interval 
1

( , ]
i i

n n

+
 we can note that the first terms ( 0,...,h i= ) 

1
( )

h
BinT θ  are decreasing (have

negative derivative) while the last terms (
0

1,...,h i i r= + − ) 
1

( )
h

BinT θ  are increasing (have positive

derivative). The sum [7.2] of all terms (binomial tail), being decreasing, has a negative derivative. In [7.1] we
have a similar situation, with the difference that the derivatives are weighted with decreasing weights 

20,5,2
( )q h .

Such a weighting, where the negative terms are multiplied by weights each of which is larger than any of the
weights applied to the positive terms, will also result in a negative derivative for [7.1] (cf. Figure 2).
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3 4

Detail of interval [3/20, 4/20)

the first three components
are weighted with 1 

Figure 2.

Binomial terms 20

1 1

20
(1 )h h

h
θ θ

−

   −  
 for different values of h. In the top-right frame, what happens in the

interval 
1

3 4
( , ]
20 20

θ ∈  is shown in detail. For each binomial term, the corresponding weight 
20,5,2

( )q h  is also

indicated within parentheses.

Numerical illustration of results in Lemma 4

Lemma 4 is illustrated by showing that, in the case suggested by the Reviewers, the various relationships hold.

Summary tables of computations ( 20, 5, 2n k r= = = )

Table 1. Illustration of  [3.27]-[3.33]

h
, 1,

, 1,
( )

n k r

n h

n k r

SumC

k q h

+

−

+
≡

, 1,

, 1,
(1 ( ))

n k r

n h

n k r

SumW

k q h

+

−

+
≡ −

n h
k

−

, 1,
( )

n k r
q h

+ , 1,
1 ( )

n k r
q h

+
−

0 95,367,431,640,625 0 95,367,431,640,625 1 0
1 19,073,486,328,125 0 19,073,486,328,125 1 0
2 3,814,697,265,625 0 3,814,697,265,625 1 0
3 678,330,198,120 84,609,255,005 762,939,453,125 0.889100957279846 0.110899042720154
4 61,305,644,400 91,282,246,225 152,587,890,625 0.40177267113984 0.59822732886016
5 168,168,000 30,349,410,125 30,517,578,125 0.005510529024 0.994489470976
6 0 6,103,515,625 6,103,515,625 0 1
7 0 1,220,703,125 1,220,703,125 0 1
8 0 244,140,625 244,140,625 0 1
9 0 48,828,125 48,828,125 0 1

10 0 9,765,625 9,765,625 0 1
11 0 1,953,125 1,953,125 0 1
12 0 390,625 390,625 0 1
13 0 78,125 78,125 0 1
14 0 15,625 15,625 0 1
15 0 3,125 3,125 0 1
16 0 625 625 0 1
17 0 125 125 0 1
18 0 25 25 0 1
19 0 5 5 0 1
20 0 1 1 0 1
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Table 2. Illustration of  [3.32]-[3.37]

h
, 1,

1
n k r

SumW
+ , 1,

2
n k r

SumW
+ , 1, , 1,

( 1 2 )
n k r n k r

SumW SumW
+ +

+
, 1, , 1,

( 1 2 )n h

n k r n k r
k SumW SumW

−

+ +
− +

0 0 0 0 95,367,431,640,625
1 0 0 0 19,073,486,328,125
2 0 0 0 3,814,697,265,625
3 67,945,160,045 16,664,094,960 84,609,255,005 678,330,198,120
4 76,162,381,465 15,119,864,760 91,282,246,225 61,305,644,400
5 29,016,678,725 1,332,731,400 30,349,410,125 168,168,000
6 6,103,515,625 0 6,103,515,625 0
7 1,220,703,125 0 1,220,703,125 0
8 244,140,625 0 244,140,625 0
9 48,828,125 0 48,828,125 0

10 9,765,625 0 9,765,625 0
11 1,953,125 0 1,953,125 0
12 390,625 0 390,625 0
13 78,125 0 78,125 0
14 15,625 0 15,625 0
15 3,125 0 3,125 0
16 625 0 625 0
17 125 0 125 0
18 25 0 25 0
19 5 0 5 0
20 1 0 1 0

Tables 3-4. Illustration of  [3.49]  for  various h

0h =

u n h

u

−      

( 1)n u h
k

− −

−
, ,

( )
n u k r
q h

−

, ,

( 1) ( )n u h

n u k r

n h
k q h

u
− −

−

−   −    
0 1 1,099,511,627,776 1 1,099,511,627,776
1 20 274,877,906,944 1 5,497,558,138,880
2 190 68,719,476,736 1 13,056,700,579,840
3 1,140 17,179,869,184 1 19,585,050,869,760
4 4,845 4,294,967,296 1 20,809,116,549,120
5 15,504 1,073,741,824 1 16,647,293,239,296
6 38,760 268,435,456 1 10,404,558,274,560
7 77,520 67,108,864 1 5,202,279,137,280
8 125,970 16,777,216 1 2,113,425,899,520
9 167,960 4,194,304 1 704,475,299,840

10 184,756 1,048,576 1 193,730,707,456
11 167,960 262,144 1 44,029,706,240
12 125,970 65,536 1 8,255,569,920
13 77,520 16,384 1 1,270,087,680
14 38,760 4,096 1 158,760,960
15 15,504 1,024 1 15,876,096
16 4,845 256 1 1,240,320
17 1,140 64 1 72,960
18 190 16 1 3,040
19 20 4 1 80
20 1 1 1 1

                                                         Tot     95,367,431,640,625

1,2, 3 [ ]h omissis=

4h =

u n h

u

−      

( 1)n u h
k

− −

−
, ,

( )
n u k r
q h

−

, ,

( 1) ( )n u h

n u k r

n h
k q h

u
− −

−

−   −    
2 120 268,435,456 0.61824095249176 19,914,935,040
3 560 67,108,864 0.531864166259766 19,987,968,000
4 1,820 16,777,216 0.433437824249268 13,234,821,600
5 4,368 4,194,304 0.326042175292969 5,973,327,360
6 8,008 1,048,576 0.216293334960938 345,945,600
7 11,440 262,144 0.1153564453125 32,432,400
8 12,870 65,536 0.0384521484375 0
9 11,440 16,384 0 0

10 8,008 4,096 0 0
11 4,368 1,024 0 0
12 1,820 256 0 0
13 560 64 0 0
14 120 16 0 0
15 16 4 0 0
16 1 1 0 0

                                                            Tot         61,305,644,400
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6,7, ... [ ]h omissis=

Tables 5-6. Illustration of the order transition formulas [3.52]-[3-57]

We set, for instance, 20, 5, 2, ,n k r sum n bound h r= = = = = −

h
1, , 1,

( 1)
n k sum bound

Genq h
+ +

+
, , ,

( )
n k sum bound

Genq h

0-2 1 1
3 0.969977988861501 0.969977988861501
4 0.753139955922961 0.753139955922961
5 0.231012515723705 0.231012515723705
6-20 0 0

Table 7. Illustration of proof of Lemma4.G (Weight Sequence monotonicity)

h
, ,

, ,

( )

( )

n k r

sum k bound

q h

Genq h=

, ,

( 1)
n k r
q h +

1, ,
( 1)

sum k bound
Genq h

−

−

1, , 1
( 1)

sum k bound
Genq h

− −

−

0 1 1 1 1
1 1 1 1 1
2 1 0,969977988861501 0,969977988861501 0,960001168772578
3 0,969977988861501 0,753139955922961 0,753139955922961 0,691806972026825
4 0,753139955922961 0,231012515723705 0,231012515723705 0,144089162349701
5 0,231012515723705 0 0 0
6-20 0 0 0 0

Finally, let us disclose the intuition beyond the usage of the generalized weights to establish the monotonicity of
the sequence of binomial weights in the decomposition into binomial components. Consider the difference
between consecutive weights and take, for instance, 3h =

, , , ,
( 1 : 4) ( : 3)

n k r n k r
q h q h+ = − =

( )
2 2

2 2

2,..., 2,...,

4 20 3
,..., ,...,2 2

20 4 20 3

4 min 3 min

(20 4)! (20 3)!1 1

! ... ! ! ... !4 1
k k

k k

i i
i i

j j
j k j k

n
n n n nk k

n n

n r n r

n n n nk

= =

= =

− −

= − = −∑ ∑

≤ + ≤ +

− −

= −

−

∑ ∑

In this specific case, the weight 
20,5,2

(3)q  is a sum of 560 terms. The weight 
20,5,2

(4)q is a sum of 165 terms.

These terms are listed in Table 1 (those relative to
20,5,2

(3)q  are on the left of each column and those relative to

20,5,2
(4)q on the right, arranged as to show the correspondence).
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Table 8. Correspondence between set of partitions
The 560 configurations making up 

20,5,2
(3)q  (on the left of each column) and the 165 configurations making up

20,5,2
(4)q .

1 1 1 14 1 5 5 6 2 1 1 13 2 6 6 3 3 5 2 7    2 5 2 7 4 5 1 7 5 6 5 1 7 3 1 6
1 1 10 5 1 5 6 5 2 1 10 4 2 6 7 2 3 5 3 6    2 5 3 6 4 5 2 6    3 5 2 6 5 7 1 4 7 3 2 5    6 3 2 5
1 1 11 4 1 5 7 4 2 1 11 3 2 6 8 1 3 5 4 5    2 5 4 5 4 5 3 5    3 5 3 5 5 7 2 3    4 7 2 3 7 3 3 4    6 3 3 4
1 1 12 3 1 5 8 3 2 1 12 2 2 7 1 7 3 5 5 4    2 5 5 4 4 5 4 4    3 5 4 4 5 7 3 2    4 7 3 2 7 3 4 3    6 3 4 3
1 1 13 2 1 5 9 2 2 1 13 1 2 7 2 6 3 5 6 3    2 5 6 3 4 5 5 3    3 5 5 3 5 7 4 1 7 3 5 2    6 3 5 2
1 1 14 1 1 6 1 9 2 1 2 12 2 7 3 5 3 5 7 2    2 5 7 2 4 5 6 2    3 5 6 2 5 8 1 3 7 3 6 1
1 1 2 13 1 6 2 8 2 1 3 11 2 7 4 4 3 5 8 1 4 5 7 1 5 8 2 2    4 8 2 2 7 4 1 5
1 1 3 12 1 6 3 7 2 1 4 10 2 7 5 3 3 6 1 7 4 6 1 6 5 8 3 1 7 4 2 4    6 4 2 4
1 1 4 11 1 6 4 6 2 1 5 9 2 7 6 2 3 6 2 6    2 6 2 6 4 6 2 5    3 6 2 5 5 9 1 2 7 4 3 3    6 4 3 3
1 1 5 10 1 6 5 5 2 1 6 8 2 7 7 1 3 6 3 5    2 6 3 5 4 6 3 4    3 6 3 4 5 9 2 1 7 4 4 2    6 4 4 2
1 1 6 9 1 6 6 4 2 1 7 7 2 8 1 6 3 6 4 4    2 6 4 4 4 6 4 3    3 6 4 3 6 1 1 9 7 4 5 1
1 1 7 8 1 6 7 3 2 1 8 6 2 8 2 5 3 6 5 3    2 6 5 3 4 6 5 2    3 6 5 2 6 1 2 8 7 5 1 4
1 1 8 7 1 6 8 2 2 1 9 5 2 8 3 4 3 6 6 2    2 6 6 2 4 6 6 1 6 1 3 7 7 5 2 3    6 5 2 3
1 1 9 6 1 6 9 1 2 10 1 4 2 8 4 3 3 6 7 1 4 7 1 5 6 1 4 6 7 5 3 2    6 5 3 2
1 10 1 5 1 7 1 8 2 10 2 3 2 8 5 2 3 7 1 6 4 7 2 4    3 7 2 4 6 1 5 5 7 5 4 1
1 10 2 4 1 7 2 7 2 10 3 2 2 8 6 1 3 7 2 5    2 7 2 5 4 7 3 3    3 7 3 3 6 1 6 4 7 6 1 3
1 10 3 3 1 7 3 6 2 10 4 1 2 9 1 5 3 7 3 4    2 7 3 4 4 7 4 2    3 7 4 2 6 1 7 3 7 6 2 2    6 6 2 2
1 10 4 2 1 7 4 5 2 11 1 3 2 9 2 4 3 7 4 3    2 7 4 3 4 7 5 1 6 1 8 2 7 6 3 1
1 10 5 1 1 7 5 4 2 11 2 2 2 9 3 3 3 7 5 2    2 7 5 2 4 8 1 4 6 1 9 1 7 7 1 2
1 11 1 4 1 7 6 3 2 11 3 1 2 9 4 2 3 7 6 1 4 8 2 3    3 8 2 3 6 2 1 8 7 7 2 1
1 11 2 3 1 7 7 2 2 12 1 2 2 9 5 1 3 8 1 5 4 8 3 2    3 8 3 2 6 2 2 7    5 2 2 7 7 8 1 1
1 11 3 2 1 7 8 1 2 12 2 1 3 1 1 12 3 8 2 4    2 8 2 4 4 8 4 1 6 2 3 6    5 2 3 6 8 1 1 7
1 11 4 1 1 8 1 7 2 13 1 1 3 1 10 3 3 8 3 3    2 8 3 3 4 9 1 3 6 2 4 5    5 2 4 5 8 1 2 6
1 12 1 3 1 8 2 6 2 2 1 12 3 1 11 2 3 8 4 2    2 8 4 2 4 9 2 2    3 9 2 2 6 2 5 4    5 2 5 4 8 1 3 5
1 12 2 2 1 8 3 5 2 2 10 3 3 1 12 1 3 8 5 1 4 9 3 1 6 2 6 3    5 2 6 3 8 1 4 4
1 12 3 1 1 8 4 4 2 2 11 2 3 1 2 11 3 9 1 4 5 1 1 10 6 2 7 2    5 2 7 2 8 1 5 3
1 13 1 2 1 8 5 3 2 2 12 1 3 1 3 10 3 9 2 3    2 9 2 3 5 1 10 1 6 2 8 1 8 1 6 2
1 13 2 1 1 8 6 2 2 2 2 11 3 1 4 9 3 9 3 2    2 9 3 2 5 1 2 9 6 3 1 7 8 1 7 1
1 14 1 1 1 8 7 1 2 2 3 10 3 1 5 8 3 9 4 1 5 1 3 8 6 3 2 6    5 3 2 6 8 2 1 6
1 2 1 13 1 9 1 6 2 2 4 9 3 1 6 7 4 1 1 11 5 1 4 7 6 3 3 5    5 3 3 5 8 2 2 5   7 2 2 5
1 2 10 4 1 9 2 5 2 2 5 8 3 1 7 6 4 1 10 2 5 1 5 6 6 3 4 4    5 3 4 4 8 2 3 4   7 2 3 4
1 2 11 3 1 9 3 4 2 2 6 7 3 1 8 5 4 1 11 1 5 1 6 5 6 3 5 3    5 3 5 3 8 2 4 3   7 2 4 3
1 2 12 2 1 9 4 3 2 2 7 6 3 1 9 4 4 1 2 10 5 1 7 4 6 3 6 2    5 3 6 2 8 2 5 2   7 2 5 2
1 2 13 1 1 9 5 2 2 2 8 5 3 10 1 3 4 1 3 9 5 1 8 3 6 3 7 1 8 2 6 1
1 2 2 12 1 9 6 1 2 2 9 4 3 10 2 2  2 10 2 2 4 1 4 8 5 1 9 2 6 4 1 6 8 3 1 5
1 2 3 11 10 1 1 5 2 3 1 11 3 10 3 1 4 1 5 7 5 10 1 1 6 4 2 5    5 4 2 5 8 3 2 4   7 3 2 4
1 2 4 10 10 1 2 4 2 3 10 2 3 11 1 2 4 1 6 6 5 2 1 9 6 4 3 4    5 4 3 4 8 3 3 3   7 3 3 3
1 2 5 9 10 1 3 3 2 3 11 1 3 11 2 1 4 1 7 5 5 2 2 8    4 2 2 8 6 4 4 3    5 4 4 3 8 3 4 2   7 3 4 2
1 2 6 8 10 1 4 2 2 3 2 10 3 12 1 1 4 1 8 4 5 2 3 7    4 2 3 7 6 4 5 2    5 4 5 2 8 3 5 1
1 2 7 7 10 1 5 1 2 3 3 9 3 2 1 11 4 1 9 3 5 2 4 6    4 2 4 6 6 4 6 1 8 4 1 4
1 2 8 6 10 2 1 4 2 3 4 8 3 2 10 2  2 2 10 2 4 10 1 2 5 2 5 5    4 2 5 5 6 5 1 5 8 4 2 3   7 4 2 3
1 2 9 5 10 2 2 3   9 2 2 3 2 3 5 7 3 2 11 1 4 10 2 1 5 2 6 4    4 2 6 4 6 5 2 4   5 5 2 4 8 4 3 2   7 4 3 2
1 3 1 12 10 2 3 2   9 2 3 2 2 3 6 6 3 2 2 10  2 2 2 10 4 11 1 1 5 2 7 3    4 2 7 3 6 5 3 3   5 5 3 3 8 4 4 1
1 3 10 3 10 2 4 1 2 3 7 5 3 2 3 9    2 2 3 9 4 2 1 10 5 2 8 2    4 2 8 2 6 5 4 2   5 5 4 2 8 5 1 3
1 3 11 2 10 3 1 3 2 3 8 4 3 2 4 8    2 2 4 8 4 2 10 1 5 2 9 1 6 5 5 1 8 5 2 2   7 5 2 2
1 3 12 1 10 3 2 2   9 3 2 2 2 3 9 3 3 2 5 7    2 2 5 7 4 2 2 9    3 2 2 9 5 3 1 8 6 6 1 4 8 5 3 1
1 3 2 11 10 3 3 1 2 4 1 10 3 2 6 6    2 2 6 6 4 2 3 8    3 2 3 8 5 3 2 7    4 3 2 7 6 6 2 3   5 6 2 3 8 6 1 2
1 3 3 10 10 4 1 2 2 4 10 1 3 2 7 5    2 2 7 5 4 2 4 7    3 2 4 7 5 3 3 6    4 3 3 6 6 6 3 2   5 6 3 2 8 6 2 1
1 3 4 9 10 4 2 1 2 4 2 9 3 2 8 4    2 2 8 4 4 2 5 6    3 2 5 6 5 3 4 5    4 3 4 5 6 6 4 1 8 7 1 1
1 3 5 8 10 5 1 1 2 4 3 8 3 2 9 3    2 2 9 3 4 2 6 5    3 2 6 5 5 3 5 4    4 3 5 4 6 7 1 3 9 1 1 6
1 3 6 7 11 1 1 4 2 4 4 7 3 3 1 10 4 2 7 4    3 2 7 4 5 3 6 3    4 3 6 3 6 7 2 2   5 7 2 2 9 1 2 5
1 3 7 6 11 1 2 3 2 4 5 6 3 3 10 1 4 2 8 3    3 2 8 3 5 3 7 2    4 3 7 2 6 7 3 1 9 1 3 4
1 3 8 5 11 1 3 2 2 4 6 5 3 3 2 9    2 3 2 9 4 2 9 2    3 2 9 2 5 3 8 1 6 8 1 2 9 1 4 3
1 3 9 4 11 1 4 1 2 4 7 4 3 3 3 8    2 3 3 8 4 3 1 9 5 4 1 7 6 8 2 1 9 1 5 2
1 4 1 11 11 2 1 3 2 4 8 3 3 3 4 7    2 3 4 7 4 3 2 8    3 3 2 8 5 4 2 6    4 4 2 6 6 9 1 1 9 1 6 1
1 4 10 2 11 2 2 2  10 2 2 2 2 4 9 2 3 3 5 6    2 3 5 6 4 3 3 7    3 3 3 7 5 4 3 5    4 4 3 5 7 1 1 8 9 2 1 5
1 4 11 1 11 2 3 1 2 5 1 9 3 3 6 5    2 3 6 5 4 3 4 6    3 3 4 6 5 4 4 4    4 4 4 4 7 1 2 7 9 2 2 4   8 2 2 4
1 4 2 10 11 3 1 2 2 5 2 8 3 3 7 4    2 3 7 4 4 3 5 5    3 3 5 5 5 4 5 3    4 4 5 3 7 1 3 6 9 2 3 3   8 2 3 3
1 4 3 9 11 3 2 1 2 5 3 7 3 3 8 3    2 3 8 3 4 3 6 4    3 3 6 4 5 4 6 2    4 4 6 2 7 1 4 5 9 2 4 2   8 2 4 2
1 4 4 8 11 4 1 1 2 5 4 6 3 3 9 2    2 3 9 2 4 3 7 3    3 3 7 3 5 4 7 1 7 1 5 4 9 2 5 1
1 4 5 7 12 1 1 3 2 5 5 5 3 4 1 9 4 3 8 2    3 3 8 2 5 5 1 6 7 1 6 3 9 3 1 4
1 4 6 6 12 1 2 2 2 5 6 4 3 4 2 8    2 4 2 8 4 3 9 1 5 5 2 5    4 5 2 5 7 1 7 2 9 3 2 3   8 3 2 3
1 4 7 5 12 1 3 1 2 5 7 3 3 4 3 7    2 4 3 7 4 4 1 8 5 5 3 4    4 5 3 4 7 1 8 1 9 3 3 2   8 3 3 2
1 4 8 4 12 2 1 2 2 5 8 2 3 4 4 6    2 4 4 6 4 4 2 7    3 4 2 7 5 5 4 3    4 5 4 3 7 2 1 7 9 3 4 1
1 4 9 3 12 2 2 1 2 5 9 1 3 4 5 5    2 4 5 5 4 4 3 6    3 4 3 6 5 5 5 2    4 5 5 2 7 2 2 6   6 2 2 6 9 4 1 3
1 5 1 10 12 3 1 1 2 6 1 8 3 4 6 4    2 4 6 4 4 4 4 5    3 4 4 5 5 5 6 1 7 2 3 5   6 2 3 5 9 4 2 2   8 4 2 2
1 5 10 1 13 1 1 2 2 6 2 7 3 4 7 3    2 4 7 3 4 4 5 4    3 4 5 4 5 6 1 5 7 2 4 4   6 2 4 4 9 4 3 1
1 5 2 9 13 1 2 1 2 6 3 6 3 4 8 2    2 4 8 2 4 4 6 3    3 4 6 3 5 6 2 4    4 6 2 4 7 2 5 3   6 2 5 3 9 5 1 2
1 5 3 8 13 2 1 1 2 6 4 5 3 4 9 1 4 4 7 2    3 4 7 2 5 6 3 3    4 6 3 3 7 2 6 2   6 2 6 2 9 5 2 1
1 5 4 7 14 1 1 1 2 6 5 4 3 5 1 8 4 4 8 1 5 6 4 2    4 6 4 2 7 2 7 1 9 6 1 1

As apparent from the table, a subset of the 560 configurations of frequencies which make up the sum in 
, ,

( )
n k r
q h

is in a one-to-one correspondence with the 165 configurations of frequencies which make up the sum in

, ,

( 1)
n k r
q h + .

The method for obtaining the inequality 
, , , ,

( ) ( 1) 0
n k r n k r
q h q h− + > consists of increasing the terms in the sum

in 
, ,

( 1)
n k r
q h +  by a less restrictive condition (the set of configurations of frequencies such that

2,...,
( min ( 1) 2)

jj k
n h r

=

≥ + − − is larger than the one where 
2,...,

( min ( 1) )
jj k

n h r
=

≥ + − ), which increases the terms

to 969. Again, a subset of these 969 terms will be in correspondence one-to-one with similar terms in the set of
560 configurations. The correspondence consisting in having the same frequencies 

2
( ,..., )

k
n n  except one (for

instance 
2

n ) which is shifted by 1. The relative sum of central multinomial coefficients computed over such a

subset is equal to 
, ,

( )
n k r
q h , which implies the inequality.
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Figure 3.
Symbolic representation of the procedure used to compare two consecutive weights

Table 9. Illustration of proof of Lemma4.G (Weight Sequence monotonicity) and Remark 3.5

h

( )
2

1
1

2,...,

, ,
,..., 2

,

min

( )!1
( )

! ... ! ... !1
k

k

j
j

j
j k

n k r sum h
n n u k

n sum n h

n bound

sum h
q h

n n nk

=

=

−

= =∑

≥

−

≡

−
∑

0 1
1 1
2 1
3 0,969977988861501
4 0,753139955922961
5 0,231012515723705
6-20 0

h

( )
2

1
1

2,...,

( 1)
,..., 2

,

min

( ( 1))!1

! ... ( 1)! ... !1 k

k

j
j

j
j k

sum h
n n u k

n sum n h

n bound

sum h

n n nk

=

=

− +

= =∑

≥

− +

−−
∑

(sum over the “forward image”)

( )
2

1
1

2,...,

( 1)
,..., 2

,

min

( ( 1))!1

! ... ( 1)! ... !1 k

k

j
j

j
j k

sum h
n n u k

n sum n h

n bound

sum h

n n nk

=

=

− −

= =∑

≥

− −

+−
∑

(sum over the “backward image” )

0 1 0,9976215910458
1 1 0,996828788061066
2 1 0,995771717414755
3 0,969977988861501 0,94374878302915
4 0,753139955922961 0,696503243409097
5 0,231012515723705 0,200052363798022
6-20 0 0
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Table 10. Illustration of results in discussion section 4 ( 20, 5, 2, 1n k r δ= = = = )

h
, ,

( )
n k r
q h

, ,

' ( , )
n k r

q h δ

0 1 1
1 1 1
2 1 1
3 0,969977988861501 0,969977988861501
4 0,753139955922961 0,960001168772578
5 0,231012515723705 0,946729257702827
6 0 0,929094403982162
7 0 0,90570330619812
8 0 0,874759197235107
9 0 0,833988189697266

10 0 0,780601501464844
11 0 0,71136474609375
12 0 0,6229248046875
13 0 0,5126953125
14 0 0,380859375
15 0 0,234375
16 0 0,09375

17-20 0 0
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