ON THE MINIMIZATION OF MULTINOMIAL TAILS
AND THE GUPTA-NAGEL CONJECTURE

ABSTRACT

This paper is primarily concerned with the problem of minimizing the lower tail of the multinomial
distribution. During the study of that specific problem, we have developed an approach which we believe to be
general and useful for solving a wide class of similar problems, even involving multinomial probabilities
represented by tails with “irregular shapes”. Concerning the main problem, we provide a self-contained proof that
the minimum of the multinomial lower tail is actually reached, as conjectured by Shanti S. Gupta and Klaus
Nagel in 1967 within the framework of subset-selection problems, at the equal probability configuration, i.e.,
when the cell probabilities are equal to one another. We also point out some novel inequalities and general

properties involving multinomial probabilities and multinomial coefficients.
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1. INTRODUCTION TO THE PROBLEM

An open problem in the theory of multinomial distribution is the minimization of its lower fail. Apparently, such
a problem is of general interest, since multinomial tails occur in several situations, both in theoretical research
and technological applications. A conjecture, proposed by Gupta and Nagel (1967, p. 9), suggests an answer to
the above important issue, and it claims that the minimum of the multinomial lower tail (and, hence, the
maximum of the complementary upper tail) is obtained when the cell probabilities are equal to one another.

Gupta-Nagel Conjecture (about the minimum of the lower tail of a multinomial distribution).

Given the integers k, n, r, wherek > 2, 0 <r < n, n > 0, the function:

_ n! n n,
Tr(al,...,ak) = nlzowzmx] nl'—nk' 61 Qk‘ ’ [11]
éln‘/:n
nlg.'ilzlill ‘n‘/+r
where
k
0<6<..<0 <1,>060=1 [1.2]
j=1
reaches the minimum at the equal probability configuration:
1 1
91:E7. ,9]‘::%. [13]

Remarks
Due to the restriction



< ,minkn7.+r, [1.4]

the function [1.1] is the lower tail of the multinomial distribution, and r is a parameter of amplitude.
For instance, in the binomial case (i.e., when k = 2), the above tail can be written as:

n+r
g

7(0,1-0) = ]. [1.5]

n
n] o (1-6,)"", 6, € (0,

n,=0 1

It is clear that all the complexity of the minimization problem arises from the constraint [1.4], which restricts the
multinomial cumulative probability to be smaller than 1, and dependent on 6,,...,0, . Also, we may note that, if it

k
were r > n, the constraint [1.4] would be satisfied for any &, n, n,...,n, (n, >0,...,n, >0 ,an =n), and,
=1

therefore, 7,(0,,...,6,)= 1. Finally, observe that the assumption 6§, < ... <6, can be, equivalently, replaced

with 0, = min{ 0, ...,0, } since the multinomial tail [1.1] is symmetrical with respect to n,, ... ,n, and, hence,

the order of 6,, ... ,0, is, actually, immaterial.

In order to provide an introductory discussion on the Gupta-Nagel conjecture, let us define some notation. We
denote by

0 .
By(a,8) = fo b (1t dt,0<0<1,a>0, 8>0,and [1.6)
B(o,f) = B(a,f), [1.7]
the incomplete Beta function and the Beta function, respectively, and by
_ Be (O[,ﬂ)
Iy(a, ) = Bl 0) [1.8]

the incomplete beta function ratio, which is linked to the binomial upper tail by the following well-known
relationships (easily obtainable by integrating the incomplete beta [1.6] by parts):

n n
L(t,n—t+1) = [h] " (1—-0)" " 0<t<n, [1.9]
h=t
L(e,B) = 1 — I ,(8a). [1.10]

We can observe that the binomial lower tail [1.5] can be written as:

nO,1-0) = 1 - Z [;] o (1— 6y 96(0,%], [1.11]
n =110+ !
by [1.9]-[1.10]
= 1= L (P - ) = 1 - P ) [1.12]
by [1.6]-[1.8]
-0, T netr
_ B(n_[”gf’l]’[”;”]ﬂ) e R () [1.13]

The above integral representation of the binomial lower tail, shows that 7,.(6,,1 — 6,) is minimized at §, =1/2,

and it might also suggest that, in order to solve the general conjecture, we could, as well, try to represent the
multinomial lower tail [1.1] in terms of Dirichlet integrals. This can be done, for instance, through the well-
known expansion of multinomial probabilities obtained by Olkin and Sobel (1965) and Stoka (1966) (cf. also,
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Olkin and Sobel (1972)), which is useful to recall here, as it provides insight on the nature of the difficulties in
solving the Gupta-Nagel conjecture:
n!

: 7Ir1 'flk
) Y
n, =0 n,_, =0 1 ke
n n ’]’L'
! n n,
TS LR [1.14]
n =s +1 =8, +1 nl' nkc'
k—1
= 1= > I(5+Ln—s)
h=1
k—1 k—1
+ Iehlﬂhz(sh1 +Ln 5,3 5 +Ln 5,12)

DT g e (AL g Tl g, [1.15]
where
L, 6,0, (5t =55 55 +hn—s )
o n! 9171 Gh,,n Sy Shm - n—m-— g‘sh
= fo fo et (=308 B dty . dt, . [1.16]

i=1

sh]! S (n—m— Zs]h)!
i=1

Given the structure of [1.15], minimizing a representation in terms of Dirichlet integrals of the multinomial tail
[1.1], while it is trivial for the binomial case [1.13], was not possible fork > 2. Thus, a new approach appears
necessary to solve the problem, and that is the object of the present article.

The structure of the paper is as follows. Section 2 contains preliminary results. Section 3 contains the main
results, including a novel inequality and a proof of the Gupta-Nagel conjecture. Some discussion is made in
Section 4, where it is pointed out how some of the methods introduced here can be applied to a large class of
problems relevant to the minimization of multinomial probabilities. As an example, a further minimization
problem is proposed. Statistical considerations, historical background and numerical illustrations are contained
in sections 5, 6, 7, respectively.

2. PRELIMINARY RESULTS
Notation: two partitions of the sample space

Given the integers n and k, n > 0, k > 2, we denote by:

k
S = 1 (en) € 28| Y on,=mn [2.1]
j=1

the sample space of the multinomial distribution, i.e., the set of points having k£ nonnegative integral coordinates
which sum to n (here Z denotes, as usual, the set of nonnegative integers).

Partition 1
For each integer r, 0 < r < n, consider the following partition of S, :

S U w

n,k,r

[2.2]

n,k = n,k,r

w

n,k,r

into two disjoint subsets, C, , —and W, = o, defined as follows:

n,k,r Sn,k‘ = Cu,k.J' U I/Vu,k,r ’ Cn,k:,r m



Cn.,/f,r E{ (nl""’nk) € Sn,k | G < Jigunkn] + ’f’]' [23]
W,oir = { (ngyesmy) €8, [ 1y > jgi‘r”lknj +r } [2.4]

Note that the set C, , = is the part of S , over which the sum of the multinomial lower tail [1.1] is carried out,
while W =S5, -C

n,k,r

ik is the complement of C, , =~ with respect to the sample space S, , . The reason for

n,k,r
this notation is to comply with the meaning (cf. Section 5 on historical background) of the original problem
dealt with by Gupta and Nagel (subset-selection approach), where these two sets represent the “Correct

Selection” zone and “Wrong Selection” zone, respectively.

Partition 2
Also, let F,..., P, be the partition of S into (n + 1) mutually disjoint parts defined as:

Sn,k = U Ph’ [25]
h=0
B, E{ () €8, | my=nh }, h=0,...n. [2.6]

(This partition, which separates the configurations with different values of n,, will be useful to express the

multinomial tail in terms of binomial probabilities.)

Results (properties of the partitions)
The properties, of the two above partitions [2.2] and [2.5], which will be established in the following Lemmas 1
and 2, will be used in the next section to build a proof of the Gupta-Nagel conjecture.

Preliminary Remarks

First of all, note that a sequence (P,

0o P)s j€4{0,n =1}, in C = always exists, being formed at least by

F, since n, = 0 satisfies n, < min n_ + 7.
J=2,. 0k 7

Similarly, a sequence (P, ..., B,), (i +1) € {l...,n}, in W

n.k,r

always exists, being formed at least by P, ,

since r < n by assumption, and n, = n implies min n, =
1 2.k J

Lemma 1.
Givennand k, n > 0, k > 2, foreach r, 0 < r < n, it is possible to split the partition [2.5] into two nonempty

sequences:
HU..Up) (P, U UR), [2.7]
je {0,...7n - 1} » such that each part in the first sequence (F, U ... U P;) isasubsetof C, , ,ie.,
j
exists j such that U B C Cnﬁ,“. [2.8]

h=0

J
In particular, denoting by j, the largest integer in {0,...,n —1} such that U b, c C,,, holds, while

h=0
B,NW,,, =@ forany h € {j, +1 ...,n}, we have:
=0 i k=2
j() = [29]
=r if k>3



In other words, we can say that (F, U...U P ) is the “longest” of the subsequences (£, U...U P;) “fully

contained” in C

nk,r*
Lemma 2.
Givennand k, n > 0, k > 2, foreach r, 0 < r < n, it is possible to split the partition [2.5] into two nonempty

sequences:

(P,U..UP) (P, U..UR), [2.10]

(i +1) € {1,...,n}, such that each part in the second sequence (P, U...U P,) is a subset of W, ie.,

n,k,r’

n
exists i suchthat () B c W, .
h=i+1 ’

[2.11]

In particular, denoting by i, the smallest integer in {0,...,n — 1} such that U B, c W,,, holds, while

h=i+1
K NC,,, = forany h €{0,..., 4}, we have:
=N k=2
=r
iy = if k>3 and (n<k)U (@ >n—k) [2.12]
= [W] or (depending on n, k, r) = [W]— 1
if k>3 and(n>k)N (0<r<n-k)
and 4, is always between r and n — £k, i.e.,
r < i, < n—k. [2.13]
In other words, we might say that (PZ.0 +15 -+ By) 1s the “longest” of the subsequences (P_, ,... ,B,) “fully

contained” in W

n,k,r

Taking into account the symbolic representation provided by Figure 1, can be of help to the reader to visualize
the intuitive meaning of the two lemmas.

S,k

n,
P,
nkr
iy +1
P,
0
case iO > p // q,,k,r \\
/ \\ Pr+ 1
P.
multinomial lower tail
Py
P,



Figure 1
Venn diagram representing the
results in Lemma 1 and Lemma 2, for k > 3

Being uninteresting (and trivial) the case k¥ = 2, the two above Lemmas will be proven only for £ > 3.

Proof of Lemma 1.

,
Assume (n,...,n,) € U P, 0<r <mn. Then, n, <r, which implies that the condition n, < min n, +r
h=0 J=2,..k J

holds a fortiori and, hence, (n,,...,n,) € C, , . Besides, for any i > r 4 1, the intersection P, N W

n,k,r

nk,r = @18
n
nonempty, since for each (n,..,n,) € U P, where _erlinkn]. =0, we have n, > _rr%inknj + r. Thus
h=r+1 J=25s 7=2,...,
(Fy, -, P.), is the “longest” sequence of the type (F, ..., P;), j€{0,...,n —1}, included in C, , , while

J n,

P has at least one element in common with W, .

Proof of Lemma 2.

Al. Consider the case n < k.
Since for any (n,...,n,) €S

n.k ?

the n,'s sum to n, the condition (n < k) implies that at least one of the

ny,...,n, 1s equal to zero: (n < k) :>]_£’11i{lk’n = 0 . Therefore, for any (n,...,n,) € B,, h=1...,n, we have

n, — min n, =n,. This implies B, U (R U .. UP)CC and (P, U..UPB,)CW Thus

1 =2,k 7 1° n,k,r T nk,r *

A2. Consider the case (r > n — k).
k

When n, > 7 >n —k,since itis ) n,=n, for each(n, ...,n,) € S, the condition n, >n — k implies that
i=1

at least one of the n,, ... ,n, is equal to 0. Hence, n, — min np=mn>r holds.

J=240s

This can also be expressed by saying that, for any r € {n—%k+1,..,n—1}, the sequence of parts

(P., ..., B,) is included in W,

. since in each of these parts the condition n, > ‘I%inknj +r(>n—k)
’ J=2,...k

holds. Thus 4, = r.

Note that, since, by Lemma 1, the union (F, U...U F,), 0 <r < n, is included in C

n,k,r

by definition of i

we have: 4;>r. On the other hand, since (P,_, ,,..,F,) 1is included in W, ., we have:
iy < n — k. Therefore:
r<id,<n-—k [2.14]
B. Consider thecase (n > k)N (0<r<n-—k).
By the definition of i, , we can write:
(iy +1) = min {h | h > min n, + r}
he{l,...,n} j=2,..k 7



. n—nh
- hEI{Ill,l.{l.n}{h | h > [k_1]+r} [215]

by denoting R, , = u —w [%] the remainder of the division of u by w, w = 0,

n—h-— Rnfhkfl
= min {h | h > -] . +7r . [2.16]

From [2.15], since B,_,, | <

. . n—h—(k-—2)
> PO S .
(zo+1)_her{r1171'.r.1ﬁn}{h|h> -] +7}
— i {h|h>n+r(k’—1)—(k‘—2)}
hed{l,...,n} k

o4 rk—1)—(k—-2)
= | -

] +1 = o, +1. [2.17]

On the other hand, from [2.15], since R, > 0, we have:

n—h,k—1

he{l,...,n} k—1
_ {hh n—l—r(k:—l)}
he{l,..., } k
+rk—1
S T [2.18]
Therefore
a, <i, <ay. [2.19]

By observing that o, — a; <1, sincej, > r, we conclude that, depending on n, k, r, either one of the following
must hold:

iy =0 OF iy = a; —1 [2.20]

[

In the next Section, we will propose a proof of the Gupta-Nagel conjecture. Since we make use of the partitions
[2.2] and [2.5] of the set S , , we provide some additional observations on them.

n,k >

Remark 1.2
By combining the results in Lemmas 1 and 2, we have that for £ > 3, the set S, , can be represented (cf. Figure

1) as a union of n + 1 disjoint parts (cf. Figure 1):

rRU..UPR UP U .. U B U P U .. Ubap [2.21]
where the two outer sequences (K, U..UF)cC C ; ., (PZ.0+1 U.UF)Cc W,
and W

n,k,r

always exist and are the

longest sequences of P ’s contained in C

ok respectively. The inner sequence



P,,U.. U Pio) exists if and only if i, > r. When it exists, we have that, for each P, in that sequence
(h =7 +1,..,4), the two intersections: (F, N C, , ) and (F, N W, , ) are nonempty .

The part B, C S,,, where n, is equal to &, has cardinality, say | P, |, equal to the number of the ordered

k2
partitions of (n — h) into exactly (k —1) nonnegative integers. Clearly, the cardinality | P, | is a decreasing

function of A.
The sets £, B, are, respectively, the largest and the smallest parts of S, , which are included in C,, , while

PZ.0 .1, P, are, respectively, the largest and the smallest parts of SM which are included in W,

When 4, > r, the sets (£, N C ;) and (PZ,U N C . ) are, respectively, the largest and the smallest

r+1 n.k,r
intersections of C, , ~with any of the P,'s, h =7 +1, ..., 4.
3. MAIN RESULTS

As a first consequence of Lemmas 1 and 2, we are able to establish easily a novel inequality, which bounds
tightly the multinomial tail [1.1] and, hence the corresponding linear combination of Dirichlet integrals
obtainable by [1.15], between two simple binomial tails. The following inequality is of general interest and it
also allows to anticipate that, under some specific conditions, the Gupta-Nagel conjecture holds true, as shown
in Corollary 1.

Theorem 1.
Given n, k,r, n >0, k> 2, 0 <r <n,let 4, be the integer defined in Lemma 2.
We have:
1-6, 1-6, . .
f L=l — pydt ol f Lol (1 ) dt
0 < Y Mg g < — 3.1]
B(n - T +1) n >0 z0 Ty L ;. Pt k B(n g Y +1)

3
> n;=n
Jj=1

where the equalities hold when r = 4, .

Proof of Theorem 1.

Since by definitions [2.1]-[2.4], we have Coir = S = Woprs the multinomial lower tail [1.1] can be
represented as:
nt g g
Ny 20,0,y >0 Tl1! nk! 1 k
]é]ﬁ]:ﬂ
n < yini.lul.}\ n;+r
!
C"‘/N 7L1 Lo le .
or as:
n! n n,
n.k,r 1 k
From [3.2], since by Lemma 1, (F, ..., B.) C C,, is the “longest” subsequence in (F, ..., P,_;) which is
included in C we have:

n,k,r >



|
n: n,
(91

o [3.4]

v

| ]
U Mt

1-0
fo L1 — t)dt

T n
_ M (1—0) ™ = 3.5
nlz::O nl] 1 ( 1) B(n—r,r—Fl) [3.5]
On the other hand, from [3.3], since by Lemma 2, (PY.U w1s s Bo)C W is the “longest” subsequence in
(P, ..., B,) whichisincluded in W, , , we have:
< 1 L 3.6
- _P UZUP n!..on! Lo vk [3.6]
o U~ UP :
= 1= X [n o (1—6) ™ [3.7]
n =i +1 1

f1791 tnfiofl (1 _ t)LO dt
0

0] n
= n;ﬂ [m] o Q=6 = S, [3.8]
Finally, note that when i, = r the two bounds [3.5] and [3.8] are coincident.
Figure 1 represents clearly the intuitive meaning of the above inequality.
0

Corollary 1.
When i, = (and, in particular, under the implying condition (n < k) U (r > n —k)), the Gupta-Nagel

conjecture, holds true.

Proof of Corollary 1 (partial proof of Gupta-Nagel conjecture).
When 4, = r, by [3.1], we have that [1.1] is equal to a binomial lower tail, and, hence, is a decreasing function

of 0,0 <6 <1/k.Besides, by proof of Lemma 2, the condition (n < k) U (r > n — k) implies (i, = 7).
J

To complete the proof of the conjecture, it remains to show that it holds also under the conditions 4, > r,

k > 3. To this purpose, we present some further results (Lemmas 3 and 4), while Theorem 2 shall complete the
argument.

Lemma 3.
For k > 3, the multinomial lower tail [1.1] is minimized at a point which has necessarily the following form:

0, =0 1=6

b T ) [3.9]

referred to, in the literature, as the slippage configuration.

Proof of Lemma 3.
The result in Lemma 3 is due to Gupta and Nagel (1967) (cf. also, Proschan and Sethuraman (1977) and
Marshall and Olkin (1979)). For self-containedness, we provide the reader with a concise argument. We have:



|
_ n. n ny,
7 (05, 0,) = Z P R 0" ... 0,
ny 20,1, >0 BT 5
&
]zz:lnjfn
nISJ :IIZlIIITLJ+7
k-2
E—2 n— Z}] n;—m n,
n—>y n; k—2 =
=1 _
_ Z TL' 9n1 gnkfz 2 n Z nj 0]4 . 9}{
B n n k—2 L k=2 J=t k—2 kE—2
N n | (n — n )l =1y, n, (]_ -3 9) (1 729 )
k=2 1 k—2 J j=1J =1 J
ﬂz n; > n—r j=1
=
0nI0-S0) = E s,
n! n n \fo = thr (1 t) dt
= 1 k-2
o, Zﬂ 2 0" ... 0,55 =2 [3.10]
100 Mgy B B
s R N (e an)! B(lk—zw n 21 n; Zkiw +1)
n n;=ng—r j=1 j
=2

where we have denoted by I,

Thus, for fixed 6, ... 0

k-2

ar the smallest value taken by n, conditionally on n, ... n,_,,n,k,r.

the multinomial lower tail 7,.(0

\s--,0,) 1s minimized when 6, is minimum, i.e., for

0, =06, ,.1f k>3, by setting 6, =0, | and iterating for j = 1,...,(k — 3) times the above argument on the

-1
new renormalized arguments, we complete the proof. N

Remark 3.1 (Decomposition into binomial components)

The reason why we have introduced the partition [2.5] is that, as we shall see, under the slippage configuration,
it allows us to express the multinomial probability as a combination of binomial probabilities. In fact, by
Lemmas 1 and 2, if we compute the multinomial tail at the slippage configuration, we can write the following
“decomposition into binomial components’:

1_91 1_91
Tr (91’ k 1’ "k — 1)
n! n 1— (91 n—n,
R B Y 11
CZ I [k—l] [3.11]
B iy n! N 1— 91 n—h
- hogggkh!mnw @[gtT] [3.12]
Zﬂ n
-2 ﬁ % [h] o (1—6,) " [3.13]
h=0 - pNC,,, M Ty

this is clearly a weighted sum of binomial probabilities, where the weight for the binomial term

n
(1) & umar

1 (n —h)!
qn r(h’) = = — Y
o (k—u”h%;%hn;“.%!
1 (n—h)!
= (k_l)n—h Z n. | n, ! [314]
Tysmomy Ty g e Myt
k
]2::177,] =n,n,=h

min n.>h—r
j=2,..k 7
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which we will refer to as a “weight of order % in the decomposition into binomial components”, and below we
illustrate a mathematical interpretation of ¢, , (k) .

Also, we denote the ordinary binomial term of order 4 by:

h

! n
=2 'n P 0

P, ’le. nk.

n
BinT, (0,) = { } o (1—0) "

1— 91 n—mn,
[k ~ 1] [3.15]

Using the above notation, we can finally write our decomposition [3.13] concisely as:
(00 0,) = > 4,1, (h) BinT, (0,) [3.16]
h=0

Remark 3.2 (Behavior of the binomial probabilities)

Note that the binomial terms BinT, (), h = 1,...,n —1, 6 € (0, %] are increasing for 0 < % and decreasing

for 6 > %, while BinT{(0), BinT,(0) are, respectively, decreasing and increasing (cf. Figure 2, in Section 7).

Notation. Relative sum of “‘central” multinomial coefficients

The weights ¢, .(h) by definition [3.14] consider a bound h — r for the minimum frequency erlin ‘n; which

J=25y

depends on £ . It might be useful to define a “generalized” form of the weight ¢, , (h) where h and the bound

for the minimum frequency are not necessarily linked, and therefore the influence of each argument can be more
easily studied. Therefore, we also introduce the symbol:

1 (sum — h)!
= - ~— .1
Genqszmuk,bound (h) (k _ l)sumfh, n Zn n, 1. n, ! [3 7]

g5y T

&
> n; =sum, n, =h
Jj=1 "

which we might refer to as a “generalized weight of order %, and, clearly, the following “wrapping” relation
holds:

G5 (h) = Gengg, 1 y0,q(R) » Where sum = n, bound = h —r.  [3.18]

Besides its statistical meaning as weight, the function Geng (h) has also an interesting mathematical

sum,k,bound

interpretation. In fact, for instance when k = 3, the weight Geng,, ;.. .(h) is the sum of some (depending on

bound) “central” coefficients on the row sum — h of the Pascal triangle divided the sum of the coefficients of
the whole row, i.e., it represents the “relative” sum of some “central” coefficients in the expansion of
(z + y) ™" Similarly, Geng (h) can be seen as the analogous relative sum of “central” multinomial

sum,k,bound
coefficients in the expansion of (z; + ...+, )™ " (in this case, we might visualize the extension of the

Pascal triangle as a tetrahedron (k¥ = 4 ), a pentachoron (k¥ = 5), or, in general, a (k£ — 1 )-simplex). Therefore,
the properties of these sum of “central” multinomial coefficients, apart the specific problem we are dealing with,
can be also of general mathematical interest.

11



The following Lemma 4 is concerned with the properties of the above weights. These properties will be used to
provide a monotonicity argument for the multinomial tail under the slippage configuration and they can be
useful to solve other similar problems, as shown in section 4.

Lemma 4.
Given n, k,r, n >0, k>3, 0 <7 <n,let 4, r <4, <n,be the integer defined in Lemma 2, we have:

A) Gypp(h)=1,for h =0, ... 7, [3.19]
B) 0<q,,,.(h)<1,for h=r+1 .. i,r<i, [3.20]
&) Gy, (h) =0, fOr h =iy +1,...,n, [3.21]

D) Recurrence relation. The following interesting recurrence equation, which links the weight of order h with
k + 1 cells with the weight of same order » when the number of cells is %, holds:

k—1,,_ ol n—h 1 . ‘ n+r
= (T) o > [ " J (m) @y upr(M) if 0<h <] ]
— u=maz(0,h—1) - '
qn.]s:Jrl,T(h)
=0 if h>[”;r]
[3.22]
E) The weights ¢, , (h), h =0, ..., n form a non increasing sequence from 1 to 0, and in particular, for the
central values h =7 +1, ..., iy, 7 <y, q,,,(h) is a decreasing function of /.
F) Order transition formula
Genqsum-&-lﬁk,bmmd (h + 1) = Genqsum,kﬁbound (h) [323]
G) Increase by bound release
Genqsum.kz,bound (h) < Genqsmn,k?bound—l(h) [324]
For an illustration of all the above relationships, cf. Section 7, Tables 3-6.
Remarks and notation preliminary to the proof of Lemma 4
Remark 3.3
We can write the weight g, , (k) as follows:
1 (n —h)!
G, () = ——— _— [3.25]
ks (k—1)y"" r OZCA ny! ... mn!

12



1 Z (n—h)! (3.26]

= (k — 1)71,h [ 77,2! nk!

denoted as:
1
= TRy umC, . (h) [3.27]
—_ )
or equivalently, by observing that T 711)n7h zph: HZT: mh)n.k! _ 1, [3.28]
1 (n—h)!
hy=1- ——— _ 3.29
qn,k,r( ) (k _ 1)n—h P nZWn.“ n, [ nk | [ ]
1 (n —h)!
=1 - — — .
(k—1)y"" nzzﬂk ny! ... n,! [3.301
ﬁ: n;=n,n =h
; inm . n; <h-—r
denoted as:
1
=1 — m S’U’ITLVV?L’k,T(h) [331]

Proof of Lemma 4.

A.
Consider expression [3.31]. For h =0, ..., r, Gy (h) = 1 because, by Lemma 1, P, N Wn’“ =g.

B.
Assume h =71 +1,..,4, r<i. In such a case, by Lemmas 1 and 2, both sets (B, N C, , ) and

(£, N W,, ) are nonempty, hence by [3.31], [3.27], we have 0 < ¢, (h) <1.

C.
Consider expression [3.27]. For h =4 +1,..., n, q,, (h) = 0 , because, by Lemma 2, 5, N C, , =@
D. (Recurrence relation)
The following proof is also illustrated Section 7, Tables 1-2.
By [3.29]-[3.31] we have:

knih qn,k+1,7~(h) = knih - Summl,k:+l,r(h) [332]

A
SR e Ll L 3.33]
Nogyers Ty Ny ... nk+1 !
Igjlnj:n,nl:h

j=1

13



— kn—h _ Z (n*h)'
Nyyeis Yy n,! ... !

k+1
> n; =n,n,=h
J=1

= " - _ =t
Noysees My n2! ’nk+1!
k+1
Elnjzn.,nl:h

min n.<h—r n, ., ,<h—r N ( min n.<h—r)°
=2k U (e (]:2,....1; J )

| | |
Myyeis Yy 712 LR TLkJrl : Tyyiom Ty TL2 LN le+1 :
b+l k41
> n;=n,m=h > n;=n,m =h
J=1 =1
szIlelvl}.’kn]<h—7* (ny <h—=r N ]ilzli?.A7z]2117r)

which will be denoted as follows:

Kt~ (SumW1 + SumW2

nk+1,r n,k+1,r)

We note that, for 7 > r, the following relationship holds:

(n—h)!

SumW1 = ‘ '
ol !

n.k+1r — n
k+1

> nj:mnl:h
j=1

min n.<h—r
2,k 7

| |
u=0 u Thyyemy T, ’fL2 L. nk !
k
> nJ:nfu.,nl:h
j=1
j:rrzli?.k7z]<(lz+7t)—r
n—h n—nh
= SumW, _ .
n—u,k,r
u=0
n—h n—nh \
_ n—u—
N Z (k 1> (1 o qnfu-,k,r (h>)
u=0
On the other hand, we have:
n—nh)!
SumW?2, = ( )
n,k+1r " | n T
Ny Ty gt e Mgt
k1
];nj:n,nlzh,

14
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[3.34]

[3.35]

[3.36]

[3.37]

[3.38]

[3.39]

[3.40]

[3.41]

[3.42]



Zn—n u, ny=h
=17

(u<h—r N min n;>h-r)
=20k

> n;=n-—u, n=h
j=1
(u<h—r N min n,>h—r)
J=2,k 7

> n;=n-—u, n=h

min n.>h—r
J=2,k 7

h—r—1

ek (n=1)-
= Z m (k - 1) e qnfu,k,r(h') .

u=0

By substituting [3.41] and [3.46] into [3.37], we obtain:

- n—h
Enh qn,,k-t,-lﬂ»(h) — pnh _ Z [ " ] (k — 1)"—U—}L 1- qn—uJﬁ,r(h))

u=0

iy n—nh n—u—h

+ ) w | E=DT g, ()
u=0
u<n—h
kn—h n h = n—h 1 u
- Z:: u (k — 1)

+ i [ ] _1 ek qnfu,k.r(h)

] (]{Z _ 1) n—u—h qnfu,k’y'(h)

>

|

<

|

—
/—\
?‘

n—nh n—~h ; h—r—1 n—~h }
= Z (k,l)" ! q, ukr(L) - (k l)n o 4 ukr(h)
u=0 u=0
u<n—nh

n-+r

if h—r—1<n-—h (e, h <] 5

b

n—nh

n—nh
= Z ) { m ] (k - 1)7171‘7}1 qnfu‘k,r(h)

u=max(0,h—r

Therefore, we can conclude:
15

[3.43]

[3.44]

[3.45]

[3.46]

[3.47]

[3.48]

[3.50]



n—nh n —h
= > { u ] (k=1 g, () i 0<h <[P
knfh qn.k+1~r(h) — u=max(0,h—r)
—0,if h>[0
[3.51]
[l
E. Order transition formula
1 (sum — h)!
Gen hy=— - 3.52
qum,k,bound( ) (k . 1)sum7h "QZ;nk My [ n, | [ ]
éjln] =sum, n;=h
]:nznnk n; >bound
If we consider the two sets:
k
{(h,nQ, sy ) | an: sum, ]Erzlinknj > bound } [3.53]
=1 =ik
k
{(h +1Lny, ... on,) | ;n].: sum + 1, ngnkn] > bound } [3.54]

a one-to-one mapping can by established (h,n,, ... ,n,) < (h + 1Ln,, ... ,n,) and [3.52] can be written as:

I S D (sum — h)! [3.55]

(k o l)sumfh [ L [ n, !

&
> n; =sum+1, n;=h+1
j=1

min n.>bound
i=2,k 7

B 1 ((sum + 1) — (h + 1))! [3.56]
- _1\(sum+1)—(h+1) n,! ... n, ! ’
(k—-1) nyrin, 9 i
i‘lnj =sum+1, n,=h+1
min n,>bound
j=2,k 7
= Genqsunﬂrl‘k,bound (h + 1) [357]
U
F. Increase by bound release
Genqn,k,sum,bnund (h)
_ |
— ;_h Z _(n=m [3.58]
(k—=1)" nyoin, ny! ...ony!
&
Elnj =sum, n,=h

min R >bound

since ( ‘H%inknj > bound) = ( 'r%inknf > bound — 1), i.e. the condition 'r%inkni > bound is more stringent
J=2,0k J=20k J=2,...k

than ,n;inknj > bound — 1, we have:
J=2,0k
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k
{(h,nZ, ey ) | an: sum — h, ]ir%lnkn] > bound }

i=2

k
C {(h,ﬂ?, ) | j;nj = sum — h, 4minknj > bound — 1 }

J=2,....k

and therefore:

1 n—nh)!
n—h ( | ) | [359]
(k—1) Nysos Ty, Ty 2 vee Tyt

"

>n j=sum, ny =h

j=1

min n.>bound—1

=2,k 7/

= Genqn,k,sum,boundfl(h)
|

G. Weight Sequence monotonicity

In points A) B) C) we have seen that the weights ¢ , (h) are always in [0,1], and, in particular, they are equal

n,k,r

to 1 for A =0,...,r and equal to O for » =i, +1,..., n. We show now that, for any intermediate value

h=r+1..1i, r <i,the sequence of weights ¢ _, (h) is decreasing.

We have:
Qe (B) =, (h+1) [3.60]
_ 1 Z (n—n'! 1 (n —(h +1))!
(k - 1)n—h Tgyyeeey T TZ2 L nk ! (k - 1)n7(h+1) Vyyey ¥y, 1/2 [ Vk !
k k

]2::177,] =n,n=h ]§1V~7 =n,v;=h+1

in.i.r}‘ﬁn] > h—r jill.i.lulklljz (h+1)—r
[3.61]
S Y (n—h)! 1 5 (n — (h +1))! 3.62]

(k—1)" " pAC ny! ..ony! (k —1)y»~(*+D e v, .o,

For any h and any integer release > 0, let us denote by

M > h —r — release } [3.63]

Note that R is a possibly augmented version of P, (1 C, , =~ where, in case there is a positive release of

n,k,r,h,release

the bound h — r, the configurations are a larger number:

n,k,r.h,release ) P}L m Cn,k‘ﬂ" [364]
and, in particular,
Rn,knxh,() = Ph n Cn,k,r' [365]

With the above notation, we can write [3.62] as:
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B 1 (n —h)!
(k - 1)"711’ (h,nz,...,n,;)EP,,ﬂC"‘k_r TL2! nk
1 (n—(h+1))!

— 1)yn—(h+D) v, .ol
(k—1) (h+1,vyeees }ER, piry V2 k

[3.66]

Consider the two sets:

k
BN Cn?kﬂl =R, 0= «[ (h,nyy...my )€ B | an =n — h, jginknj >h—r l [3.67]

n,k,r,h+1,release j=2,...

k
R = [ (h+Lvy,.,v )€ B | FZQVJ. =n—(h+1), 'H?linkl/jz (h—l—l)—r—release}
[3.68]

over which the two sums are carried out. Note that for h =r +1,....4,, r <i,, by Lemmas 1-2, the set

(B, NC,,,) is not empty. Then consider any release > 0. Since, to any configuration (h,n,,...,n, )€ P, NC

n,k,r°

it might correspond a configuration (h+1,n, —1..,v,)€ R

n.k,r,h+1,release

and vice versa, it is possible to

establish a one-to-one correspondence between a subset of (B, N C, , ) and a subset of R

n,k,r,h+1,release :
(hyng,ngseesmy) & (b + Ly, vg.v) = (b4 1Ln, =1, ng,...,n,) [3.69]

With respect to the above correspondence, let us denote by I, (R in

n,k.7',h+1.7'eleuse) the 1mage of R

n,k,r,h+1,release

(7, NC,,,) and by I, (P, NC,, ) the image of (K, NC

n,k,r) in R

n,k,r,h+1,release *

Note that, if we increase

release enough, it is possible to obtain a coincidence between I, (R and the whole set

n.k,r,h+1,release )
(F,NC,.,). In particular, given [3.69], it 1is necessary to take release >1, while
I

bw

(B s tretease) © (B, NC, ) for release = 0,1. Then, assume release >1and let us denote by

SubR,

n,k,r.h+1,release

(P, N Cn’kﬂ,) . We have: Ifw (P, N Cn,k,r)

the subset of configurations in R, .\ o

Rn,k,r,thLl > Rn,k,r,thl,O = (Ph+1 n ka,T) :

which are in a one-to-one correspondence with

= SubR

n.k,rh+1,release

Therefore, we can write [3.66] as:

- 1 (n —h)!
(hyng,...,n )EP,NC, (k - 1)n7h L) L nk !
" [3.70]
3 1 (n—(h+1))!
(h+Lvpev)el, (BNC, , ) (K= VD GRS 790 B 7
—h)! —(h +D)!
_ T 1 _ (n-—n! 1 _ (n (I'Jr ) ) [3.71]
phc,, (k=1 bl (p =10y =Dy !
Ty Ty, (k — 1)n7h Ty I ny, ! nyymy, (/{,‘ — l)nihil (TLQ — 1)' e Ty !
z]i: n; =n,n,=h é n; =n,n=h
J=1 j=1
} imn}L n; > h—r . inln]l n; >h—r
[3.72]
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B 1 (n — h)! 5 (k=1)n, 1 (n — h)!
Ny Ty, (k — 1)71_}1 n2 - nk ! Tyyoomy T n—nh (/{j — ]_)"_h' ﬂ2 ... nk !
k &
JZ:jlnj =n,n=h _721”‘7 =n,n=h
]:Iglirl n; >h—r 31111 n; >h—r

by simmetry, for any « € {2,...,k} . Hence:

B 1 i Z 1 (n—h)! _ Z (k—1)n, 1 (n—h)!
k-1 u=2 Tyyoy 1 (k — 1)”7}]’ 7L2! nk! Ty Ty, n—h (k — 1)”7’7' N, - n, !

£n7 =n,n =h inj =n,n =h

J=1 j=1

inivl}_;mnfz h—r ]ilzli.l}knjz h—r

k _
1 1 (n — h)! (k=1)n,
k—1 7;2 "z;"k (k—1)""" ny,! ... n! ( n—nh )
inj =n,n=h
Jj=1
;ni?knj >h—r
Therefore, for h = r +1,...,4, — 1, we have:
qn,k:,r (h) > qn,k,r(h + 1) [373]

Remark 3.5. One might note that the proof of weight sequence monotonicity discloses a surprising property of
the relative sums of “central” multinomial weights. The central coefficients in the expansion (z,,...,z, )™ "
and the corresponding extended set (which we might call a “forward image”) which contains, as subset, the
central coefficients in the expansion (z,,...,z, )" "* have equal relative sums.

At this point, for analogy, one could ask: if we consider the central coefficients in the expansion
(2,02, )™ ", do the corresponding coefficients in the expansion (xv...,:ckil)‘*“m’(h”l) have also equal
relative sums? And, since the answer for the “forward image” is affirmative, one could expect that also the
“backward image” would have the same property. However, it can be noted that such a property does not hold

(see for instance Table 9, in Section 7, where the coefficients in the expansion (ml,...,xk_l)‘s“m‘(h‘l)

corresponding to those in the expansion (,...,z, )™=t have a smaller relative sum).

Finally, in order to complete the proof of the Gupta-Nagel conjecture, it is necessary to show that the
multinomial tail [1.1], with 6, = ... =6, , is a strictly decreasing function of 6, , also under the conditions

0<r <iyk>3.
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Theorem 2.
Given the integers n, k, r, n >0, k > 3, 0 < r < i;, the multinomial tail under the slippage configuration:

1-6 1-46
1 1
7, (0, I —

) [3.74]

is decreasing with respectto 6, , 0, € (O,%].

Proof of Theorem 2.
Assume n >0,k > 3,0 <r <.

Let us start from our decomposition into binomial components:

Oen8) = > g, (h) BinT,(8) 3.75]

h=0

A study of the monotonicity of the above weighted sum of binomial probabilities is carried out by partitioning
1 1+1

the interval (0,%] into disjoint subintervals 6, € ( ] of length 1 and by comparing the above sum with
n n

n b
the ordinary binomial tail:

> BinT,(6,) . [3.76]
h=0 ’
As to the ordinary binomial tail, since it is decreasing, for any 6, < (0, % |, we have:
1-0, , .
5 5 fo bl (1= ¢y dt
— BinT, (6,) = — 0 3.77
2 PO = & Bn—iyig D 3771
Hence, for r < i;, we can write:
LS, heos L 378
— E EBmTh(Ol) > Z @anTh(el) [3.78]

h=0 1 i+1 1

foreach 0 < i <.

By Remark 3.2, the components BinT(0,),...,BinT,(f,) are decreasing in the subinterval (%,Z —:L 1] , L.e.,
%Bin%(&l) <0, .., %BmTZ.(Hl) <0,and by Lemma4, 0 > ¢, , (0)>... > g, (i), hence we have:
1 1 w
§ <~
o g Z Blnq;t(el) qn,k,r(h)
1 h=0
7‘ §
= Z B qn,er(h) ﬁ BZnT}L(Hl) [379]
h=0 1
" .
> Z - q’nuk,'r' (Z) ﬁ BZ’/},T}L (91) [380]
h=0 1
. .
= anw-(Z) [_ ﬁ BmTh(Hl) ] (3.81]
h=0 1



i

> g (1) | =S 2 BinT,6) 3.82]
. h=0 601
by [3.78]
1"0
> g, G+ Y L BinT, (6)) [3.83]
e WSt 00, )
Since  in (i,Z i 1] all the  components BinT,_,(0,),..., BinT, (6,) are  increasing, i.e.,
n n 0

o BinT. . (0,) > O,...,i BinT, (§,) > 0 and, by Lemma4, 0 > ¢q (i+1) > .. > ¢q . (i), We can
50 i+1\"1 Y] ig N1 n,k,r n,k,r \°0
1 1
write:
d 5 .
> h;ﬂ qn?kﬂ,(h) % BinT, (0,) [3.84]
_ 5 S pure h 3.85
- % Z m h( 1) qn,k,r( ) [ . ]
1 h=r+i
Thus, for r < i;, we have:
6 i—1 ) 6 iy .
~ BinT, ,(0,) aq,,,(r+h) > o E BinT, ,(0,) q,;,(r+h). [3.86]
1 h=0 1 h=i
. . i1+ 1
Therefore, in each subinterval 6, € (—, ] , we have:
n n
§ 1-0 1-0
— 0 L. !
691 TT(l’k—l’ 7k_1)
(S i—1 iofr
- %[ Z BinTTJrh(al) qn,k,r(r—’_h) + Z BinTr+h(01) qu_’T(T'-Fh) [387]
1 h=0 h=i
1791 . P
s \]; tn—r—l (1 _ t)’ dt i
= —_— B. T .
56, Bn—rnrtl) h;rl PG G @) <0 13581

Having proven that, in each subinterval of ¢, € (0,%] , the continuous function [3.30] is decreasing, Corollary 1,

Lemma 3, and Theorem 2 complete the proof of the Gupta-Nagel conjecture.
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4. DISCUSSION

We may note that, in the proof of Theorem 2, we have used the fact that the sequence of the weights
q,,(h)'sin the decomposition into binomial components is nonincreasing, and not the actual values of the

q,,(h)'s . This means that the method we have employed here for the Gupta-Nagel conjecture is general, and it

could be applied to minimize several “variations” of the multinomial tail [1.1], even with “irregular shapes”. It
is sufficient that Lemma 3 holds (the slippage configuration is quite common in multinomial problems) and that
the relative sums of multinomial coefficients contained in the intersections (P, N C, . ), say q*k (h),

h =0,..,n (i.e., the weights assigned to the “binomial components” forming the tail), are a nonincreasing

sequence, from q:h (0)=1 to q:,” (n) =0 (in other words, the tail includes the leading decreasing term

(1—0)" and excludes the increasing term 6" ).

With the help of Figure 1, we may observe that a sequence of sets (£, N C,, ), h =0,...,n, which gives rise

n
to monotonic weights Q*;- (h)'s, can be chosen in S , in a number of ways and “shapes” U (P, NC
o " h=0
. The class of all possible the above multinomial sums describes an entire family of “multinomial tails”, to

n,kpr) in

S

n,k

which the argument developed here can be extended.

Example of minimization of another multinomial tail

Denote:
¢ (ho) =1,for h=0,.,r [4.1]
g (h6) = Geng,,,,for h>r [4.2]
and
1 179‘ n' n n
E = YT nord - ! ! cee k
qTT’ﬁ(el) Bn—7r,1r+1) fo t L=ty dt +n120,,_.7nk20 n!..om! o O
z’i:l’fl,%:n
Elin n; = 6
n—nh . , k ’
= h,6) 6" (1— o) " 4.3
>0 h Loy ) G 72:; ! 1.3]

a particular tail, which we might refer to as “¢ -equidistant-fromLevel-r tail” (as, for h > r, the weights

1

q . (h,0) do not depend on £ ). In intuitive terms, the above lower tail, where the lower bound on the minimum

frequency is constantly equal to 6, can be intuitively imagined as a multinomial lower tail which, “in its upper
end” (precisely, forh > r), “follows” at distance ¢ , the “shape” of the border of the sample space S , . In case

6 = 0 it is equal to 1, while, for § sufficiently large (6 >

—Z : llc] ), it is coincident with the probability of 7,

being less than or equal to 7 :

prob(n, < 1) < Eqr,;(6;) <1. [4.4]

As to the weights of this tail, for 2 > r, applying the same argument used in proof of Lemma 4.G we have:

'

G (h) > 5, (B +1) [4.5]
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Therefore, we can conclude that also the ““ 6 -equidistant-fromLevel-r tail” is minimized by the equal probability
configuration. Such result is somehow “more stringent” than the conjecture by Gupta and Nagel, in the sense
that the decrease rate of this tail is comprised between the ordinary binomial tail and the tail considered by

Gupta and Nagel (cf. Table 10 in section 7).

5. HISTORICAL BACKGROUND ON THE GUPTA-NAGEL CONJECTURE

The two main approaches to selection and ranking problems are commonly referred to as the indifference-zone
approach and the subset-selection approach. Comprehensive bibliography and explanations on these two
different approaches to selection procedures can be found, for instance, in Gupta and Panchapakesan (1985).
Leading research is carried out by P. Chen (cf. for instance, P. Chen (1985), (1986)). For the problem of
selection of the least likely event, under the indifference-zone approach, an older reference can be made to Alam
and Thompson (1972), while, for the problems of selecting the most probable event under the indifference-zone
approach and under the subset-selection approach, Bechhofer, Elmaghrabi, and Morse (1959) and to Gupta and
Nagel (1967), can be considered, respectively.

Gupta and Nagel's subset-selection procedure for the least probable multinomial event (or cell) is as follows:

Select the cell with observed z; iff x», < min{z,...,z,}+ 1,
wheren,,...,n, is the observed sample from a multinomial distribution with cell probabilities 6, , ...,0, and 7, is

the smallest non-negative integer such that we have a probability of a correct selection greater than or equal to a
prespecified constant « . Gupta and Nagel (1967, p.1) define a correct selection as the selection of any subset of
the & cells which contains the cell with the smallest probability (also specifying that “in the case of a tie, one of
the cells with the smallest value is considered “tagged” and the selection is correct if this “tagged” cell is in the
selected subset”). The probability of a correct selection (PCS) of the subset of cells with Gupta-Nagel's selection
procedure is given by Gupta and Nagel (1967) as the multinomial tail [1.1], where, in case of ties,

ie., 0 =..=0,, 6 denotes the probability corresponding to the “tagged” cell.

In order to carry out Gupta and Nagel's subset selection procedure, it is, therefore, necessary to know the
specific configuration 61* , ...,9; which minimizes the PCS, referred to as the least favorable configuration
(LFC).

In the literature, similar problems are often solved by the following two-step method:

1. Given 6, (or 6,, in problems of selection of the most probable event), find the configuration of the cell-
probabilities which minimizes the PCS, 2. Determine the minimizing value of 6, (or 6, ). Typically, in step 1

properties of families of distributions parameterized to preserve Schur-convexity are used (see, for instance,
Proschan and Sethuraman (1977), pp.1-2), while step 2 is usually carried out through a monotonicity result. In
fact, it is common that the probability of a correct selection is a Schur-concave function after some conditioning,

and a second step is usually necessary to remove the conditioning (cf. Marshall and Olkin (1979), pp. 396-400).
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Such a two-stage method was essentially used, for instance, by Bechhofer, Elmaghrabi, and Morse (1959) and
by Alam and Thompson (1972), for the determination of the LFC for selecting the least probable and the most
probable multinomial event, respectively, under the indifference-zone approach. Gupta and Nagel (1967) also
employed this method to derive the LFC for selecting the least probable multinomial event under the subset-

selection approach. In particular, they implicitly proved that the PCS is a Schur-concave function of 0,, ...,0, if

¢, is fixed, so that the LFC for this problem is the so-called “slippage” configuration [3.8]. They also

conjectured (1967, p. 9) that the LFC is the equal probability configuration.

6. A STATISTICALLY INTUITIVE ARGUMENT

After having recalled the origin of the problem, it can be interesting to provide also an intuitive argument which
resorts to the original meaning, as provided by S. Gupta, of the objective function, and that could be used as an
informal justification of the conjecture. Recall the statistical meaning of the problem. We are looking for the
least favorable configuration, that is the configuration of cell probabilities which minimizes the probability of a

correct selection (PCS). An intuitive explanation might consist of two observations.

Observation 1. Since this probability is a continuous function symmetrical with respect to 6,,...,6,, it is

e . -0 1
intuitive that a solution has the form (6, . 11 T

if a configuration (6,,...,0,,...,0,,...) minimizes the PCS, by symmetry, also

-0
— 11) (the so called slippage configuration). In fact, for

each given 6,

@,...,0 0,,.-.) does it. This might justify the above slippage configuration (Gupta and Nagel, 1967).

1o Upgseees

Observation 2. Having guessed that the minimum is reached at the slippage configuration and bearing in mind
the symmetry of the probability of making a correct selection, let us now view such a probability as a function

of ¢, . Take for instance r = O (but the observation could be made for any positive r). Being ¢, the smallest
probability and n, the corresponding frequency, a correct selection occurs when there are no “transgressions”
(to what is most probable to happen, i.e., that n, be less than all other frequencies) such as n; > n, or n, > n,,
and so on. Of course, it should be evident that the probability of such a “transgression” is 0 when 6, = 0
(because n, will always be 0), and it is intuitive that it will be increasing as 6, increases, because the distance
between 6, and the other probabilities is reduced, and the chance that one of the corresponding frequencies
might occur to be less than n, becomes more probable. Thus, it should be intuitive that by increasing 6, , also

increases the chance that a “transgression” will occur, and that a wrong selection is made.
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7. A SPECIFIC ILLUSTRATION OF THE PROOF

The Reviewers of this paper have kindly requested an illustration of the proof for a specific case, with

n =20, k =5, r = 2. This section contains such an illustration and aims to provide some further insight on

intuitive aspects of the methods employed.
Lemmas 1, 2 are straightforward, Lemma 3 is due to Gupta-Nagel (1967). We shall illustrate Theorem 2,

emphasizing its conceptual aspects, and will provide numerical illustration of results in Lemma 4.

Illustration of Theorem 2

Under the known settings, in Theorem 2, we wish to minimize:

20! N 1—-0 20—n,
0,...0.)= g | ——L
R CZ n! oyl ng!omy !l ! [kzl]
20,5,2 h
where
Cooso =1 (ng,emy) € 2° | Zn]. =20 and n; < min{n,,...,n;} + 2 }
: =~

(this is the subset of samples which lead to a “correct selection™).

If we view the set C,,., as partitioned with respect to the values of n,, we can write the above sum as a
“decomposition into binomial components”:

20! o (1—0 "™ o n! 1 @ \20-h
7o) = D oy [Tl] LD DD DR i [ 1 1]

| | | | |
pRURUP, Tyt Nyt Mgt Myt Nyt

where

5
P, :{ (nysns) € Z° | > m;=20and ny=h {, h=0,.,20.
=1

Here we have split the decomposition into two parts. In the first part, the sets P, are taken entirely because, by
Lemma 1, their points are all included in the correct-selection zone C,,, (cf. Fig. 1), hence the summands will
be the ordinary binomial probabilities. In the second sum, the sets P, are taken partially because not all their
configurations are in Cy ., .

Lemma 2, we know that they are excluded from the correct-selection zone C,;, (cf. Fig. 1).

The (n,...,n;) with n, > i, are not included in the decomposition because, by

Applying Lemma 2, we find that 4, = 5. Thus, we can write:

O = 3 [20} ooa—aPt 4 Y |l @0 -h! [ZOJ o (g
PASORERERG = h 1 1 =, 420 b (.., n, | ns I h 1 1
. 20 — h)! . . . .
and, denoting by gy, (h) 1_ 0= e weights of the binomial terms in the second sum,
20,5,2 420 h r £T n, | r|
3 20,5.2 )

glh (1 o gl)n—h

5 n
glh (1791)n—h + Z qn.k:,r(h) [h]

h=3
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for more clarity, let us denote the binomial terms 6 (1 —6,)" " with BinT, (6,)

2 5
= > BinT,(6) + D ay55(h) BinT,(6,)
h=0 h=3

or, considering that for » = 0,1,2 we have g¢,,.,(h) =1,

5
= Z Gy 52(h) BinT, (60,) [7.1]
h=0

where 0 < ¢y,;,(h) <1, for h =r+1,...,4,,r < i . In particular, exact computations yield the following
values:

Oy52(h) =1, for h = 0,12,

50 55(3) = 0,969977988861501 ,

50 55(4) = 0,753139955922961 ,

G0,52(5) = 0,231012515723705 ,

Gyy52(h) = 0 for h =6,...,20,

We wish to show that the sum [7.1], where some summands (h = 3,4,5) are weighed, is a decreasing function
1
of %,6 (O,E].

The intuition beyond the proof is as follows. We compare term by term above sum [7.1] with the following sum
(ordinary binomial tail):

Z BinT, (6,) [7.2]
h=0

which we know to be decreasing in 6, € (0, % ] (cf. [1.13]).

. . . 1, . . . 1
To do the comparison we split the interval 6, € (0, E] into subintervals, each of which has length — and
n
compare the two sums in each of such subintervals.
In a generic interval (1, Lt 1] we can note that the first terms (h = 0,..., 1) BinT,(0,) are decreasing (have
n n

negative derivative) while the last terms (h =i+ 1,...,4 —r) BinT,(0,) are increasing (have positive

derivative). The sum [7.2] of all terms (binomial tail), being decreasing, has a negative derivative. In [7.1] we
have a similar situation, with the difference that the derivatives are weighted with decreasing weights ¢, ., (h).

Such a weighting, where the negative terms are multiplied by weights each of which is larger than any of the
weights applied to the positive terms, will also result in a negative derivative for [7.1] (cf. Figure 2).
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are weighted with 1

07 (1- 8"

the first three components

(4=10.75)

%

Detail of interval [3/20, 4/20)

0 (1—0)"

07 (1— ¢

02 (1-0,)'®

91 (1 _ 61)19

(1-10)%

0 3 4
20 20
6,=2
Figure 2.
20

Binomial terms b

. 3
1 2
interval 0, € (20720

indicated within parentheses.

Numerical illustration of results in Lemma 4

0" (1—6,)*" for different values of &. In the top-right frame, what happens in the

5] 1s shown in detail. For each binomial term, the corresponding weight g, 5, (k) is also

Lemma 4 is illustrated by showing that, in the case suggested by the Reviewers, the various relationships hold.

Summary tables of computations (n = 20, k = 5, r = 2)

Table 1. Ilustration of [3.27]-[3.33]

h Sumon,k+l,r Sum Wn.,k+1,r k" h qn,k+1,r (h) 1- qn,k+1,r (h)
— 1.n—h — 1.n—h
=K g, () =R g, (1)
0 95,367,431,640,625 0 95,367,431,640,625 1 0
1 19,073,486,328,125 0 19,073,486,328,125 1 0
2 3,814,697,265,625 0 3,814,697,265,625 1 0
3 678,330,198,120 84,609,255,005 762,939,453,125 0.889100957279846 0.110899042720154
4 61,305,644,400 91,282,246,225 152,587,890,625 0.40177267113984 0.59822732886016
5 168,168,000 30,349,410,125 30,517,578,125 0.005510529024 0.994489470976
6 0 6,103,515,625 6,103,515,625 0 1
7 0 1,220,703,125 1,220,703,125 0 1
8 0 244,140,625 244,140,625 0 1
9 0 48,828,125 48,828,125 0 1
10 0 9,765,625 9,765,625 0 1
11 0 1,953,125 1,953,125 0 1
12 0 390,625 390,625 0 1
13 0 78,125 78,125 0 1
14 0 15,625 15,625 0 1
15 0 3,125 3,125 0 1
16 0 625 625 0 1
17 0 125 125 0 1
18 0 25 25 0 1
19 0 5 5 0 1
20 0 1 1 0 1
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Table 2. Illustration of [3.32]-[3.37]

he SumWL 0 SumW2, 00 (SumWL o+ SumW2, ) kT — (Sum Wl + SumW2, )
0 0 0 0 95,367,431, 640,625
1 0 0 0 19,073,486,328,125
2 0 0 0 3,814,697,265,625
3 67,945,160,045  16,664,094,960 84,609,255,005 678,330,198,120
4 76,162,381,465 15,119,864,760 91,282,246,225 61,305,644,400
5 29,016,678,725  1,332,731,400 30,349,410,125 168,168,000
6  6,103,515,625 0 6,103,515,625 0
7 1,220,703,125 0 1,220,703,125 0
8 244,140,625 0 244,140,625 0
9 48,828,125 0 48,828,125 0
10 9,765,625 0 9,765,625 0
11 1,953,125 0 1,953,125 0
12 390,625 0 390,625 0
13 78,125 0 78,125 0
14 15,625 0 15,625 0
15 3,125 0 3,125 0
16 625 0 625 0
17 125 0 125 0
18 25 0 25 0
19 5 0 5 0
20 1 0 1 0

Tables 3-4. Illustration of [3.49)] for various h

h =20
u _ n—u—h _
n h (k - 1) qn—u,k’,r(h) n h k 1 n—u—h h
. (k— 1" g, ()
0 1  1,099,511,627,776 1 1,099,511,627,776
1 20 274,877,906,944 1 5,497,558,138,880
2 190 68,719,476,736 1 13,056,700,579, 840
3 1,140 17,179,869,184 1 19,585,050,869,760
4 4,845 4,294,967,296 1 20,809,116,549,120
5 15,504 1,073,741,824 1 16,647,293,239,296
6 38,760 268,435,456 1 10,404,558,274,560
7 77,520 67,108,864 1 5,202,279,137,280
8 125,970 16,777,216 1 2,113,425,899,520
9 167,960 4,194,304 1 704,475,299,840
10 184,756 1,048,576 1 193,730,707,456
11 167,960 262,144 1 44,029,706,240
12 125,970 65,536 1 8,255,569,920
13 77,520 16,384 1 1,270,087,680
14 38,760 4,096 1 158,760,960
15 15,504 1,024 1 15,876,096
16 4,845 256 1 1,240,320
17 1,140 64 1 72,960
18 190 16 1 3,040
19 20 4 1 80
20 1 1 1 1
Tot 95,367,431,640,625
h =1,2,3 [omissis]
h =4
u _ n—u—h _
n—nh (k —1) () n—nh — ")
u qn—u,k,r
2 120 268,435,456 0.61824095249176 19,914,935,040
3 560 67,108,864 0.531864166259766 19,987,968,000
4 1,820 16,777,216 0.433437824249268 13,234,821,600
5 4,368 4,194,304 0.326042175292969 5,973,327,360
6 8,008 1,048,576 0.216293334960938 345,945,600
7 11,440 262,144 0.1153564453125 32,432,400
8 12,870 65,536 0.0384521484375 0
9 11,440 16,384 0 0
10 8,008 4,096 0 0
11 4,368 1,024 0 0
12 1,820 256 0 0
13 560 64 0 0
14 120 16 0 0
15 16 4 0 0
16 1 1 0 0

Tot

28
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h =67, ... [omissis]

Tables 5-6. Illustration of the order transition formulas [3.52]-[3-57]

We set, for instance, n = 20, k = 5,7 = 2, sum = n, bound = h —r

h Genqn+1,k,sum+1,bound (h + 1) Genqn,k,sum,bound (h)
0-2 1 1
3 0.969977988861501 0.969977988861501
4 0.753139955922961 0.753139955922961
5 0.231012515723705 0.231012515723705
6-20 0 0

Table 7. Illustration of proof of Lemmad4.G (Weight Sequence monotonicity)

h qn,k,r (h) ank,r (h + 1) Genqsumfl,k,bound (h - 1) Genqsumfl,k,boundfl (h - 1)
= Genqsum,k,baund (h)

0 1 1 1 1

1 1 1 1 1

2 1 0,969977988861501 0,969977988861501 0,960001168772578

3 0,969977988861501 0,753139955922961 0,753139955922961 0,691806972026825

4 0,753139955922961 0,231012515723705 0,231012515723705 0,144089162349701

5 0,231012515723705 0 0 0

6-20 0 0 0 0

Finally, let us disclose the intuition beyond the usage of the generalized weights to establish the monotonicity of
the sequence of binomial weights in the decomposition into binomial components. Consider the difference
between consecutive weights and take, for instance, h = 3

Qb +1=4) = q,, (h:=3)

n.k,r

_ 1 5 (20 — 4)! 1 5 (20 — 3)!

n—4 | | _1320-3 | |
4 nyn, (ORI (k—1) i, Ny o Ty
k k
> on;=20—4 > n;=20—3
i=2 i=2
4 < min n +r 3< min n,.+r
=2,k =2,k

In this specific case, the weight g¢,,.,(3) is a sum of 560 terms. The weight g,,,(4) is a sum of 165 terms.
These terms are listed in Table 1 (those relative to g¢,,.,(3) are on the left of each column and those relative to

G5 (4) on the right, arranged as to show the correspondence).
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Table 8. Correspondence between set of partitions

The 560 configurations making up gy 5 (3) (on the left of each column) and the 165 configurations making up gy - ,(4) .
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q(h+1) withbound released by 2 =1
(969 terms)

q(h+1) withbound released by 1=10.96
(455 terms) /

7 q(h+1)=0.75 .
i (165 terms) Y

q(h)=0.97
(560 terms)

Figure 3.
Symbolic representation of the procedure used to compare two consecutive weights

Table 9. Illustration of proof of Lemmad.G (Weight Sequence monotonicity) and Remark 3.5

h 1 sum — h)!
Gir () = ———y |( I : v
o+ (k—1) i, ny!..ony !yl
&
]2:11 n; =sum, n=h
min n.>bound
j=2,..k 7
0 1
1 1
2 1
3 0,969977988861501
4 0,753139955922961
5 0,231012515723705
6-20 0
h 1 (sum — (h + 1))! 1 > (sum — (h — 1))!
(k — 1)sum—(h+l) s, Ty I (nu — 1)' ey ! (k — 1)sum—(h—1) i, n2! (nu + 1)' ey !

& k
n;=sum, n,=h n.=sum, n,=h
J 1 J »

j=1 i=1

min n,>bound min n.>bound

=2,k j=2pk 7

(sum over the “forward image”)

(sum over the “backward image” )

0 1 0,9976215910458

1 1 0,996828788061066
2 1 0,995771717414755
3 0,969977988861501 0,94374878302915
4 0,753139955922961 0,696503243409097
5 0,231012515723705 0,200052363798022
6-20 O 0
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Table 10. Illustration of results in discussion section4 (n =20,k =5r =26 =1)

h quw(h) q‘ (h76)

n,k,r

RoR R

969977988861501 0,969977988861501
753139955922961 0,960001168772578
,231012515723705 0,946729257702827
0,929094403982162
0,90570330619812
0,874759197235107
0,833988189697266
0,780601501464844
0,71136474609375
0,6229248046875
0,5126953125
0,380859375
0,234375

0,09375
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