Statistics, Cybersecurity [Year 2021 - 22]
  
      
      Topics on Statistics with intensive computer applications   
             
      
      $ \int_0^t d S_u = \int_0^t \mu(S_u, u) du + \int_0^t\sigma(S_u, u) dW_u $
 
  Supporto al corso e alla didattica telematica, by T. Gastaldi   #Sapienzanonsiferma  #Sapienzadoesnotstop
  
  (Instructor: tommaso.gastaldi@gmail.com,
  https://www.datatime.eu/public/cybersecurity/)
  Whatsapp group for the students of this course
  Invitation to join the Whatsapp group for this course: 
      
      https://chat.whatsapp.com/Kk3wRGmmxWH9RNUo01zFdX
      
  (work group for communication exchange about the course and exams. When first joining, send a message with your name and id ("matricola"))
Students research blogs:  [write your link in the google sheet]
  each student will create his/her own free blog, eg. with any free blogging platform, to publish their hypertext essays [for the oral exam], and 
      indicate the link in the google sheet we have prepared)
  VOLUNTARY WORK GROUPS created by students
  
      [to be filled]
  ________________________________________________________________________________________
  
  
  - LESSON 01 -  [23 Sept 2021] 
        
        
        VIDEO LESSONS:
        
        
        
        Course Introduction
        
        Lesson_01_Intro_01_Welcome_CourseStructure_Exams   https://drive.google.com/file/d/1OFWq9cpEyIfk7qcPBVF_kX1IILYVkn8m/view?usp=sharing
        
        Lesson_01_Intro_02_OralExam_YourBlog https://drive.google.com/file/d/1_7tICctUq7lHXWTFjlHfgG_6kWvkuBxq/view?usp=sharing
        
        Lesson_01_Intro_03_WrittenExam_YourIDE https://drive.google.com/file/d/1g6KQbvuNNwCEFdr0L0gebCNas1DfByAP/view?usp=sharing
        
        Lesson_01_Intro_04_LessonWorkFlow_HowtoCiteYourSources https://drive.google.com/file/d/10ZiwDmOJelY4AmCKU0L8u9oII38VqcMl/view?usp=sharing
        
        
        
        Theory
    
        Lesson_01_Theory_01_DataSetDefinition_Population_Attributes https://drive.google.com/file/d/1B1MUKNXEbrYmMuZTNPf-SObLwCxhD3Hp/view?usp=sharing
        
        Lesson_01_Theory_02_DescriptiveAndInferentialStatistics https://drive.google.com/file/d/1C7JIf1d5a5W_Pa3M18Zp6WQqySESQFsN/view?usp=sharing
        
        Lesson_01_Theory_03_UnivariateAndMultivariateStatistics https://drive.google.com/file/d/17kjGwE-S5NDuLhmQUcexvDXAyntireof/view?usp=sharing
        
        Lesson_01_Theory_04_FirstUnivariateExample_TowardTheDistribution https://drive.google.com/file/d/1mEmOTQkJ4sX4pYB3OoxdrEVts0JD8YBS/view?usp=sharing
        
        Lesson_01_Theory_05_ImportanceOfDistribution https://drive.google.com/file/d/18qR73tUfm9-Nm869UAAW12UvytKS4T0C/view?usp=sharing
        
        Lesson_01_Theory_06_EmpiricalUnivariateDistribution https://drive.google.com/file/d/1WkQVYbkofjAQlChoWbPstEUT9p_QcUrL/view?usp=sharing
        
        Computer applications, and language fundamentals for statistical algos 
        Lesson_01_Apps_01_IntroductionToVSAndLanguages https://drive.google.com/file/d/1LFZQGsBxqWb8q80sgrlqLLWRVjusneRV/view?usp=sharing
        
        Lesson_01_Apps_02_CreateAVisualStudioProject https://drive.google.com/file/d/1LSw8cNdbni-AOLk71dcfWa7PTbprlhci/view?usp=sharing
        
        Lesson_01_Apps_03_RunYourVeryFirstPrograms https://drive.google.com/file/d/1BVDwkJUPOkti79MCNg4EVsPFJYelaLHW/view?usp=sharing
        
        Lesson_01_Apps_04_WinformsAndObjectProperties https://drive.google.com/file/d/1Zs4QDdTdFGfxXuFF0v1t-YimdynEfaoc/view?usp=sharing
        
        
        Extra material (optional)
        
        Lesson_01_Apps_05_OOP_EventDriven https://drive.google.com/file/d/1goukDbMRgaDMfd6nvcpyEGMI-cyZRcmy/view?usp=sharing
        
        Lesson_01_Apps_06_CreatingObjects_Definition_Instantiation https://drive.google.com/file/d/1gQZY5jUloOK8_zuV21iqgWgCcMfujTLr/view?usp=sharing
        
        Lesson_01_Apps_07_CreatingObjects_PracticalExamples https://drive.google.com/file/d/1DIgrwpiENQnqPZJ5_N_ldGhlvFhkLyox/view?usp=sharing
        
        Lesson_01_Apps_08_ReferenceAndValueTypes https://drive.google.com/file/d/1HZ4vu0dVx8VJDM0X4Hmg7YoduBIJTjwp/view?usp=sharing
        
        Lesson_01_Apps_09_ReferenceAndValueTypes_SimpleDemo https://drive.google.com/file/d/1DxhvyOYYsj8ETq36kqCZ66Eaxq5ayQm-/view?usp=sharing
        
        
        
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: post your link within 3 Oct 2021 or -1 penalty on 
        final grade may apply]
        
        Researches about theory (R)
1_R. Give your best description of the many reaching out of statistics, in its various form, as a branch of math (Probability theory, etc.), as a set of methodologies used in many other disciplines, as an essential tool to deal with any sort of data, make reports and provide governance tools. Discuss whether it can be considered a "science" and what is the "scientific method" (what is a "theory" and what is a "hypothesis"). What is the role of Statistics in Math and Science ?
        
        Applications / Practice (A)
        
        1_A. Create - in both languages C# and VB.NET 
        (and optionally in js) - 
        a program which does the following simple tasks to get acquainted with the tool:
        
        -
        when a button is pressed some text appears in a richtexbox on the startup form
        -
        when another button is pressed animate one or more balls (possibly of different 
        colors and sizes) within a 
        rectangle
        
        
        
        OPTIONAL (web version)
        
        
        Do the same using plain js/html/css (simple examples in:
        
        https://www.datatime.eu/public/cybersecurity/JSTutorial/ )
        
        
        
        
        REFERENCES / SOURCES  / USEFUL LINKS
        Platform to publish your weekly homework:
        
        Choose your free blogging platform: https://www.wpbeginner.com/beginners-guide/how-to-choose-the-best-blogging-platform/ , 
          https://www.creativebloq.com/web-design/best-blogging-platforms-121413634
        Always cite your sources and give proper credits (this is useful for both 
        avoiding plagiarism, but also declining responsibility for possible errors in 
        the sources): https://www.plagiarism.org/article/how-do-i-cite-sources
    
        Additional useful readings on statistical theory:
        
        
        https://en.wikipedia.org/wiki/Statistical_unit
        
        https://en.wikipedia.org/wiki/Unit_of_observation
        
        https://en.wikipedia.org/wiki/Statistical_population
        
        https://en.wikipedia.org/wiki/Variable_and_attribute_(research ), https://stattrek.com/descriptive-statistics/variables.aspx , https://study.com/academy/lesson/defining-the-nature-of-an-attribute-being-measured.html
        
        https://en.wikipedia.org/wiki/Data_set
        
        https://en.wikipedia.org/wiki/Sample_(statistics)
        
        https://en.wikipedia.org/wiki/Descriptive_statistics
        
        https://en.wikipedia.org/wiki/Statistical_inference , https://statistics.laerd.com/statistical-guides/descriptive-inferential-statistics.php
        Frequency distribution: 
        
        https://www.stat.uci.edu/what-is-statistics/#:~:text=Statistics%20is%20the%20science%20concerned,interpreting%20and%20presenting%20empirical%20data.&text=Any%20measurement%20or%20data%20collection,number%20of%20sources%20of%20variation.
        
        https://www.sciencedaily.com/terms/statistics.htm
        
        https://www.quora.com/Is-statistics-a-science
        
        https://www.quora.com/Is-statistics-math-or-science
        
        https://www.quora.com/What-is-the-difference-between-mathematics-and-statistics
        
        https://www.reddit.com/r/askscience/comments/3ra1su/why_is_string_theory_a_theory_in_science_doesnt/
        
        ...
        
        
        For applications:
        
        
        Download your IDE (include C# and VB.NET): https://visualstudio.microsoft.com/it/downloads//
        
        Example of VB.NET c#  comparison table:  https://sites.harding.edu/fmccown/vbnet_csharp_comparison.html
        
        Example of code converter: https://codeconverter.icsharpcode.net/
        
        Case styles: https://medium.com/better-programming/string-case-styles-camel-pascal-snake-and-kebab-case-981407998841
        
        Format Shortcut: https://stackoverflow.com/questions/4942113/is-there-a-format-code-shortcut-for-visual-studio#:~:text=To%20answer%20the%20specific%20question,F%20to%20format%20the%20selection
        
        
        Programming paradigms, OOP: https://en.wikipedia.org/wiki/Programming_paradigm
        
        Event driven programming: https://en.wikipedia.org/wiki/Event-driven_programming
        
        Object class: https://docs.microsoft.com/en-us/dotnet/api/system.object?view=netcore-3.1
        
        Inheritance: https://medium.com/@andrewkoenigbautista/inheritance-in-object-oriented-programming-d8808bca5021
        
        Value types vs Reference types: https://docs.microsoft.com/it-it/dotnet/csharp/language-reference/builtin-types/value-types , http://net-informations.com/faq/general/valuetype-referencetype.htm , https://www.c-sharpcorner.com/article/C-Sharp-heaping-vs-stacking-in-net-part-i/ , https://www.codeproject.com/Articles/1204612/How-string-Behaves-Like-Value-Type-as-it-is-refere
        
        Value type: https://docs.microsoft.com/it-it/dotnet/api/system.valuetype?view=netcore-3.1
        
        
        https://stackoverflow.com/questions/23345554/the-differences-between-initialize-define-declare-a-variable
        
        For Blogs:
        
        https://www.websiteplanet.com/blog/business-blogging-statistics/
        
        
        Programming courses (link sent by company):
        
        https://www.futurelearn.com/subjects/it-and-computer-science-courses/coding-programming
        
        
        
        ______________________________________________________________________________________
        
        
        - 
        LESSON 02 -  [30 Sept 2021]
         
        
        VIDEO LESSONS:
    
        Theory
    
        Lesson_02_Theory_01_AttributeOperationalization_ScaleOfMeasurement https://drive.google.com/file/d/1MotGvQALCv0RSI9m_qU3SBckHZb3m7cF/view?usp=sharing
    
Lesson_02_Theory_02_CategoricalAndQuantitativeVariables https://drive.google.com/file/d/1ehacAHXb5eaBN99l_1siNHj_3huHUfBY/view?usp=sharing
Lesson_02_Theory_03_TimeSeriesAnalysis https://drive.google.com/file/d/1-IJ280tHTn78Le8vpiAItvO9eO80cjs1/view?usp=sharing
Lesson_02_Theory_04_SpacialDataAnalysis https://drive.google.com/file/d/1UFGQ3arfpeHFYgiIx0FvqXF0cqrVwLIX/view?usp=sharing
Lesson_02_Theory_05_StatisticalDataInRealWorld_DW_OLTP_Olap https://drive.google.com/file/d/1WMI-N4Swi6lnXWD7KHYOLE_Yvp8RGtwX/view?usp=sharing
Lesson_02_Theory_06_StreamAndBatchProcessing_Intro_DataStreaming https://drive.google.com/file/d/1pVZZ23inf5wFiFsop1y-ZY4zoj9ebeKD/view?usp=sharing
Lesson_02_Theory_07_StreamAndBatchProcessing_Intro_OnlineOffline https://drive.google.com/file/d/115LNBHnjQfUYPDFJOOToGVEHxEKUNS0e/view?usp=sharing
        Lesson_02_Theory_08_StreamAndBatchProcessing_Intro_Collections_Random_Timer https://drive.google.com/file/d/1-nxFZ488KyyRoSLqstxnTS06FWuw9kjy/view?usp=sharing
    
Lesson_02_Theory_09_StreamAndBatchProcessing_Intro_AverageAsRepresentativeValue https://drive.google.com/file/d/1oOnXX9W7gWkUchTpYXKPvxmMQ3L-mpEl/view?usp=sharing
Lesson_02_Theory_10_StreamAndBatchProcessing_Intro_Metadata https://drive.google.com/file/d/1nysLtwfxahZyagsLeA_S85_4BOYpWdEo/view?usp=sharing
Lesson_02_Theory_11_StreamAndBatchProcessing_Intro_RawDataToObjects https://drive.google.com/file/d/1wLmmIesCiFdOkkMLZmChEibryfnLKmni/view?usp=sharing
Lesson_02_Theory_12_StreamAndBatchProcessing_KnuthOnlineAlgo https://drive.google.com/file/d/1LmzG2uKSO4X782XQ8w0n57emJxXxHirl/view?usp=sharing
        
        
        Computer applications, and language fundamentals for statistical algos 
        Lesson_02_Apps_01_StreamAndBatchProcessing_BatchExample_Random_List  https://drive.google.com/file/d/1AazPlPpEwo35DQkT7_xgLKuriGRgiSue/view?usp=sharing
        
        Lesson_02_Apps_02_StreamAndBatchProcessing_StreamExample_OnlineAlgo https://drive.google.com/file/d/14i5P3-FBagNwyRLx36Xhdofo2AWmiJ-h/view?usp=sharing
Lesson_02_Apps_03_ImportanceOfMeanOnlineAlgo_IssuesWithFloatingPoint https://drive.google.com/file/d/1iApjQUliWs8Qm66yfVqzLSwFRE9-w7rq/view?usp=sharing
Lesson_02_Apps_04_UnivariateDistribution_DiscreteVariable https://drive.google.com/file/d/14RNJguDeBaw0EXi4H2H64eyzmFRddDt3/view?usp=sharing
Lesson_02_Apps_05_UnivariateDistribution_ContinuousVariable https://drive.google.com/file/d/1XelrkJC8qfDycuNmWkZNd5vEsMco7xjJ/view?usp=sharing
        
        Extra help to clean up code (optional material):
        
        OPT  
        Lesson_02_Apps_06_RefactoringExample_NeedForModularity  https://drive.google.com/file/d/1wOT7fn60ndCOvVsOR9T4IUTD47fRYTsh/view?usp=sharing
OPT Lesson_02_Apps_07_RefactoringExample_Maintanability https://drive.google.com/file/d/1ne8uwE5oYW7GwuqZWoTYXgnFKM0pN5mR/view?usp=sharing
OPT Lesson_02_Apps_08_RefactoringExample_Linq_LambdaExpressions https://drive.google.com/file/d/1mtv9UT6azakrQFZlbqSyUHFyyCHW6TMU/view?usp=sharing
        OPT  
        Lesson_02_Apps_09_RefactoringExample_Reusability  https://drive.google.com/file/d/1ISl9eK3QPBb1vrn7pj2yHLLtAEUmYgxk/view?usp=sharing
        
        
        
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: post your link within 10 Oct 2021 or -1 penalty on 
        final grade may apply]
        
        Researches about theory (R)
        
        2_R. Describe the most common configuration of data repositories in the real 
        world and corporate environment. Concepts such as Operational or Transactional 
        systems (OLTP), Data Warehouse DW, Data Marts, Analytical and statistical 
        systems (OLAP), etc. Try to draw a conceptual picture of how all these 
        components may work together and how the flow of data and information is 
        processed to extract useful knowledge from raw data.
3_R. Show how we can obtain an online algo for the arithmetic mean and explain the various possible reasons why it is preferable to the "naive" algo based on the definition.
        
        Applications / Practice (A)
        2_A. Create - in both languages C# and VB.NET - 
        a demonstrative program which computes the online arithmetic mean (if it's a 
        numeric variable) and your own algo to compute the distribution for a discrete 
        variable and for a continuous variable (can use values simulated with RANDOM 
        object).
        
       3_A. Create an object providing a rectangular area which can be moved and 
        resized using the mouse. This area will hold our future charts and graphics.
        
        OPTIONAL
        
        Do the last exercise 
        3_A as web app, in javascript/html/css.
        
        (simple 
        examples in:
        
        https://www.datatime.eu/public/cybersecurity/JSTutorial/ ))
        
        
        Researches about applications (RA)
1_RA. Understand how the floating point representation works and describe systematically (possibly using categories) all the possible problems that can happen. Try to classify the various issues and limitations (representation, comparison, rounding, propagation, approximation, loss of significance, cancellation, etc.) and provide simple examples for each of the categories you have identified (e.g.,, https://floating-point-gui.de/basic/ , https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html , http://indico.ictp.it/event/8344/session/50/contribution/207/material/slides/0.pdf , https://stackoverflow.com/questions/2100490/floating-point-inaccuracy-examples , etc.)
        
        REFERENCES / SOURCES  / USEFUL LINKS:
        Additional useful readings on statistical theory:
        
        Operationalization: https://explorable.com/operationalization#:~:text=Operationalization%20is%20the%20process%20of,be%20measured%2C%20empirically%20and%20quantitatively ., https://en.wikipedia.org/wiki/Operationalization
        Level of measurement: https://www.questionpro.com/blog/nominal-ordinal-interval-ratio/ , https://en.wikipedia.org/wiki/Level_of_measurement , https://byjus.com/maths/categorical-data/ , https://en.wikipedia.org/wiki/Categorical_variable
        Order relation: https://en.wikipedia.org/wiki/Order_theory
        Unit of observation / Data Point: https://en.wikipedia.org/wiki/Unit_of_observation#Data_point
        Class interval: https://internal.ncl.ac.uk/ask/numeracy-maths-statistics/statistics/descriptive-statistics/class-intervals-and-boundaries.html#:~:text=Definition,only%20one%20observation%20per%20interval
        Table: https://en.wikipedia.org/wiki/Table_(database)#:~:text=In%20relational%20databases%2C%20and%20flat,have%20any%20number%20of%20rows .
        Database: https://en.wikipedia.org/wiki/Database
        More on database and relational data: https://www.khanacademy.org/computing/computer-programming/sql/relational-queries-in-sql/a/splitting-data-into-related-tables
        Time Series Analysis: https://en.wikipedia.org/wiki/Time_series#:~:text=Time%20series%20analysis%20comprises%20methods,based%20on%20previously%20observed%20values
        Arrow of time: https://en.wikipedia.org/wiki/Arrow_of_time
        Spatial Data Analysis: https://en.wikipedia.org/wiki/Spatial_analysis
        Matrices: https://en.wikipedia.org/wiki/Matrix_(mathematics )
        Vectors: https://en.wikipedia.org/wiki/Row_and_column_vectors
        Streaming Data: https://en.wikipedia.org/wiki/Streaming_data
        Data Lake (Data Swamp): https://en.wikipedia.org/wiki/Data_lake
        OLTP: https://en.wikipedia.org/wiki/Online_transaction_processing
        Data Warehouse (DW): https://en.wikipedia.org/wiki/Data_warehouse
        Data Mart: https://en.wikipedia.org/wiki/Data_mart
        On Line Analytical Processing (OLAP): https://en.wikipedia.org/wiki/Online_analytical_processing
        Data Analysis: https://en.wikipedia.org/wiki/Data_analysis
        Data Mining: https://en.wikipedia.org/wiki/Data_mining
        Data Reporting: https://en.wikipedia.org/wiki/Data_reporting
        Predictive Analytics: https://en.wikipedia.org/wiki/Predictive_analytics
        Streaming algorithms: https://en.wikipedia.org/wiki/Streaming_algorithm
        Online algorithm: https://en.wikipedia.org/wiki/Online_algorithm
        Online Vs Offline: https://stackoverflow.com/questions/11496013/what-is-the-difference-between-an-on-line-and-off-line-algorithm
        One-pass algorithm: https://en.wikipedia.org/wiki/One-pass_algorithm#:~:text=In%20computing%2C%20a%20one%2Dpass,the%20size%20of%20the%20input ., https://stackoverflow.com/questions/26322007/what-is-a-single-pass-algorithm
        One-pass Vs Online: https://stats.stackexchange.com/questions/396728/what-is-the-diffrences-between-online-and-one-pass-learning
        One-pass Vs Multi-pass: https://stackoverflow.com/questions/58407978/difference-between-one-pass-and-multi-pass-computations
        Stream Processing: https://en.wikipedia.org/wiki/Stream_processing, https://hazelcast.com/glossary/stream-processing/
        Event Stream Processing: https://en.wikipedia.org/wiki/Event_stream_processing , https://hazelcast.com/glossary/event-stream-processing/
        Data Buffer: https://en.wikipedia.org/wiki/Data_buffer
        Batch / Micro Batch Processing: https://en.wikipedia.org/wiki/Batch_processing,  https://hazelcast.com/glossary/micro-batch-processing/
        Metadata: https://en.wikipedia.org/wiki/Metadata
        Pseudocode: https://en.wikipedia.org/wiki/Pseudocode
        
        For applications
        
        Collections and Data Structures: https://docs.microsoft.com/en-us/dotnet/standard/collections/
        
        https://stackoverflow.com/Questions/128636/net-data-structures-arraylist-list-hashtable-dictionary-sortedlist-sorted
        
        https://stackoverflow.com/questions/1427147/sortedlist-sorteddictionary-and-dictionary
    
        List: https://www.dotnetperls.com/list-vbnet , http://vb.net-informations.com/collections/list.htm
        Dictionary: https://www.tutorialsteacher.com/csharp/csharp-dictionary , http://vb.net-informations.com/collections/dictionary.htm
        Sorted Dictionary: https://docs.microsoft.com/it-it/dotnet/api/system.collections.generic.sorteddictionary-2?view=netcore-3.1 , https://www.dotnetperls.com/sorteddictionary
        Sorted List: https://docs.microsoft.com/it-it/dotnet/api/system.collections.sortedlist?view=netcore-3.1 , https://www.tutorialsteacher.com/csharp/csharp-sortedlist , https://www.dotnetperls.com/sortedlist-vbnet
        KeyValuePair: https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.keyvaluepair-2?redirectedfrom=MSDN&view=netcore-3.1
        
        Floating point: https://en.wikipedia.org/wiki/Floating-point_arithmetic , https://stackoverflow.com/questions/18409496/is-it-52-or-53-bits-of-floating-point-precision
        Floating point issues: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html , 
          https://www.volkerschatz.com/science/float.html , https://floating-point-gui.de/ ,  https://csharpindepth.com/Articles/FloatingPoint .
        Decimal floating point: https://csharpindepth.com/Articles/Decimal , https://stackoverflow.com/questions/618535/difference-between-decimal-float-and-double-in-net
        Loss of significance, catastrophics cancellation: https://en.wikipedia.org/wiki/Loss_of_significance
        Fixing sums: https://en.wikipedia.org/wiki/Kahan_summation_algorithm
        Integer division: https://stackoverflow.com/questions/661028/how-can-i-divide-two-integers-to-get-a-double
        
        For/For each loop: https://www.tutorialsteacher.com/csharp/csharp-for-loop
        Do Loop: https://www.tutorialsteacher.com/csharp/csharp-do-while-loop
        If Then Else: https://www.tutorialspoint.com/vb.net/vb.net_if_else_statements.htm , https://www.dotnetperls.com/if-vbnet
My quick summary of control structures (ita): StruttureControlloFlusso.txt (send changes if you see inaccuracies, things to add/improve)
Reusability, Maintanability, Modularity, Performance: https://en.wikipedia.org/wiki/Reusability, http://singlepageappbook.com/maintainability1.html#:~:text=Modular%20code%20is%20code%20which,not%20just%20about%20code%20organization . https://press.rebus.community/programmingfundamentals/chapter/modular-programming/ , https://stackoverflow.com/questions/1444221/how-to-make-code-modular , https://en.wikipedia.org/wiki/Modular_programming , http://www.jrobbins.org/ics121f03/lesson-maintain.html , https://softwareengineering.stackexchange.com/questions/279140/performance-versus-reusability , ...
        LINQ: https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/ , https://www.tutorialsteacher.com/linq/linq-query-syntax , https://www.tutorialsteacher.com/linq/linq-method-syntax
        Lambda expressions: https://www.tutorialsteacher.com/linq/linq-lambda-expression
        Murphy Law: https://en.wikipedia.org/wiki/Murphy%27s_law
        Spaghetti code: https://en.wikipedia.org/wiki/Spaghetti_code
_______________________________________________________________________________________
        - 
        LESSON 03 -  [07 Oct 2021]
         
        VIDEO LESSONS:
    
        
        Note: "OPT"  
        indicates optional video material extra that can be skipped. Same for 
        homework, "OPT" 
        denotes homework that can be skipped.
        
        
        Theory
    
        Lesson_03_Theory_01_BivariateDistribution_Marginal_Conditional https://drive.google.com/file/d/1wgn-MDiG9H1FKFibCcTKyaTwYhSiKl-o/view?usp=sharing
        
        Lesson_03_Theory_02_BivariateDistribution_ContingencyTable https://drive.google.com/file/d/1fo1xsPRNzrhmNThHN_NHXjozC3vFEfLU/view?usp=sharing
        
        Lesson_03_Theory_03_BivariateDistribution_Bayes https://drive.google.com/file/d/1s6sf8JJJh_UsBs86TxON3uEt4udSEv-u/view?usp=sharing
        
        Lesson_03_Theory_04_BivariateDistribution_StatisticalIndependence https://drive.google.com/file/d/1AK98i1qehD3CrvbEkYAb-0tiLuCpCtzf/view?usp=sharing
        
        
        
        Computer applications, and language fundamentals for statistical algos
        
    
OPT Lesson_03_Apps_01_ReadingExternalDataSources_Intro https://drive.google.com/file/d/1WfqUhl_dftfnibnK_seLPFa-J39p8GFi/view?usp=sharing
        Lesson_03_Apps_02_StreamReader_Field_Parser_FileDialog  https://drive.google.com/file/d/1Woj01dQ8s_Ia2bUm6YdqiAGQa0yeaDHE/view?usp=sharing
    
Lesson_03_Apps_03_ReadingCSV_Example https://drive.google.com/file/d/1pkU4hwpIoSmTAwh04yI335kKfdonpdAr/view?usp=sharing
OPT Lesson_03_Apps_04_GeneralizingProgramsWithReflection https://drive.google.com/file/d/1-fqU1fc8rVYSDFsQO_Oyh0QuwL0sflFt/view?usp=sharing
        OPT Lesson_03_Apps_05_BivariateDistribution_DiscreteVariable_GettingReady https://drive.google.com/file/d/1_Nawbiqw59aXPQ6R1TOXOT0Jo7WuLxdj/view?usp=sharing
        
        Lesson_03_Apps_06_BivariateDistributionDiscrete_Computing  https://drive.google.com/file/d/1aZZ8ZTVrgqLGwlnmTK5Tz38JjDgcYT_j/view?usp=sharing
        OPT  
        Lesson_03_Apps_07_BivariateDistributionDiscrete_MakingTheContingencyTable https://drive.google.com/file/d/1VK3_qX5T8FBHiLNkouzGhJPc6rr0KVc7/view?usp=sharing
        
        
        OPT  
        Lesson_03_Apps_08_BivariateDistributionDiscrete_MoreDetails_Hashset_SortedSet https://drive.google.com/file/d/10x_znFTmastvqai9Bw17VT1hkYPR8uRa/view?usp=sharing
         
        Lesson_03_Apps_09_BivariateDistribution_ClassInterval https://drive.google.com/file/d/1JBRpM0CvMMZZ1f78Z7dmNp80JOrGcyeg/view?usp=sharing
        
        Lesson_03_Apps_10_QuickIntroductionToGraphics https://drive.google.com/file/d/1PRTrnKlvbeCYWJ9S-hRSiJfEC8LFsPAi/view?usp=sharing
HOMEWORK / ASSIGNMENTS (to be published by the student on the personal blog) : [DATE DUE: post your link within 17 Oct 2021 or -1 penalty on final grade may apply]
        
        
        Researches about theory (R)
4_R. Explain what are marginal, joint and conditional distributions and how we can explain the Bayes theorem using relative frequencies. Explain the concept of statistical independence and why, in case of independence, the relative joint frequencies are equal to the products of the corresponding marginal frequencies.
        
        Applications / Practice (A)     [work on this at least 
        30' a day, all days]
        
        4_A. Create a program - in both languages C# and VB.NET (and 
        optionally in js) - to read data from a CSV file, and store it into suitably designed objects, for further processing. Compute mean and standard 
        deviation and frequency distribution for at least one of the variable, and for 
        one pair of variables.
        
        5_A. 
        Compute - in both languages C# and VB.NET (and optionally in js) - a frequency distribution of the meaningful words 
        from any text file and create a personal graphical representation of the corresponding 
        "word cloud" (in case, can use animation if you wish), keeping into account the frequencies of the words.
        
        (A file of italian stop words, in case might be useful:
        
        https://datatime.eu/public/cybersecurity/jsTutorial/StopWords_Ita.txt: 
        please suggest more)
        
            
            
        
        Researches about applications (RA)
2_RA. Do a review about charts useful for statistics and data presentation (example of some: StatCharts.txt ). What is the chart type that impressed you most and why ?
        3_RA. Do a comprehensive research about the GRAPHICS object and all its members 
        (to get ready to create any statistical chart.)
        
        
        
        REFERENCES / SOURCES  / USEFUL LINKS:
        Additional useful readings on statistical theory:
        
        Bivariate distribution: http://www.brainkart.com/article/Bivariate-Frequency-Distributions_35069/#:~:text=In%20other%20words%2C%20a%20bivariate,students%20in%20an%20intelligent%20test.&text=Each%20cell%20shows%20the%20frequency%20of%20the%20corresponding%20row%20and%20column%20values.
        
        Contingency table: https://en.wikipedia.org/wiki/Contingency_table
        
        Conditional relative frequency: https://www.youtube.com/watch?v=PHORXJSIm2k
        Bayes: https://www.youtube.com/watch?v=XQoLVl31ZfQ , https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/
        Independence: https://www.youtube.com/watch?v=ZxzVfRiitM0
        
        For applications
        
        CSV: https://en.wikipedia.org/wiki/Comma-separated_values,  https://tools.ietf.org/html/rfc4180 , https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml , https://www.thoughtspot.com/6-rules-creating-valid-csv-files
        
        StreamReader: https://www.dotnetperls.com/streamreader, https://www.tutorialspoint.com/vb.net/vb.net_text_files.htm
        TextFieldParser: https://docs.microsoft.com/it-it/dotnet/api/microsoft.visualbasic.fileio.textfieldparser?view=netcore-3.1 , https://stackoverflow.com/questions/22297562/csv-text-file-parser-with-textfieldparser-malformedlineexception
        StreamWriter: https://www.dotnetperls.com/streamwriter-vbnet
        HashSet https://docs.microsoft.com/it-it/dotnet/api/system.collections.generic.hashset-1?view=netcore-3.1
        SortedSet  https://docs.microsoft.com/it-it/dotnet/api/system.collections.generic.sortedset-1?view=netcore-3.1
        Tuple: https://docs.microsoft.com/it-it/dotnet/api/system.tuple-2?view=netcore-3.1
        Interface, Multiple inheritance: https://www.ict.social/vbnet/oop/interfaces-in-vbnet-course
        Icomparable https://docs.microsoft.com/it-it/dotnet/api/system.icomparable?view=netcore-3.1
        Type class: https://docs.microsoft.com/en-us/dotnet/api/system.type?view=netcore-3.13.1
        GetType / typeof  http://net-informations.com/q/faq/type.html
        
        Isnumeric: https://docs.microsoft.com/it-it/office/vba/language/reference/user-interface-help/isnumeric-function   
        , https://stackoverflow.com/questions/894263/identify-if-a-string-is-a-number , https://docs.microsoft.com/it-it/dotnet/csharp/programming-guide/strings/how-to-determine-whether-a-string-represents-a-numeric-value
        
        Number/String checks: https://stackoverflow.com/questions/5311699/get-datatype-from-values-passed-as-string/5325687 ,  https://stackoverflow.com/questions/2751593/how-to-determine-if-a-decimal-double-is-an-integer , https://www.codeproject.com/Articles/13338/Check-If-A-String-Value-Is-
        
        Parse datetime:https://stackoverflow.com/questions/919244/converting-a-string-to-datetimee,  https://docs.microsoft.com/it-it/dotnet/api/system.datetime.parseexact?view=netcore-3.1 , http://net-informations.com/q/faq/stringdate.html , https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings?redirectedfrom=MSDN
        
        Reflection:  https://docs.microsoft.com/it-it/dotnet/visual-basic/programming-guide/concepts/reflection , https://docs.microsoft.com/it-it/dotnet/standard/attributes/retrieving-information-stored-in-attributes , 
          http://net-informations.com/faq/net/reflection.htm , https://www.codemag.com/Article/0211161/Reflection-Part-1-Discovery-and-Execution , https://www.youtube.com/watch?v=4Xt2o3oQMD0 , https://www.youtube.com/watch?v=wfDFI9A56Gs
Asymptotic computational complexity: https://en.wikipedia.org/wiki/Asymptotic_computational_complexity#:~:text=In%20computational%20complexity%20theory%2C%20asymptotic,of%20the%20big%20O%20notation. , https://en.wikipedia.org/wiki/Big_O_notation
        Graphics object: https://docs.microsoft.com/en-us/dotnet/desktop/winforms/advanced/getting-started-with-graphics-programming?view=netframeworkdesktop-4.8
        Transforms: http://math.hws.edu/graphicsbook/c2/s1.html , http://math.hws.edu/graphicsbook/c2/s3.html ,
        Charts: https://en.wikipedia.org/wiki/Chart , https://visme.co/blog/types-of-graphs/ , https://www.fusioncharts.com/charts/gauges
        
        Statistical data presentation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453888/
_______________________________________________________________________________________
        - 
        LESSON 04 -  [14 Oct 2021]
         
VIDEO LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, "OPT" denotes homework that can be skipped.
        
        
        Theory
Lesson_04_Theory_01_MeasuresOfCentralTendency_Dispersion https://drive.google.com/file/d/1nbxS0IDwvedWQYv9JKxczwBYCHdAdglw/view?usp=sharing
Lesson_04_Theory_02_OnlineAlgoForVariance_Welford https://drive.google.com/file/d/1PN6TYEH4XO6NsYF2-9o6aZrRIYXYmkUC/view?usp=sharing
        
        Lesson_04_Theory_03_Covariance_OnlineAlgo https://drive.google.com/file/d/1XcZXbrtPM-fmi3gJ0Zp72Qry7NO_sppx/view?usp=sharing
        
        OPT  
        Lesson_04_Theory_04_GeneralizedMean https://drive.google.com/file/d/1nO_ama3jrWlLfQ6SgqGfoEpLBXBSZ16L/view?usp=sharing
        OPT  
        Lesson_04_Theory_05_ArithmeticMean https://drive.google.com/file/d/1iCweHFvSi9yIt_JWxO_Fz1h5shvOrAxf/view?usp=sharing
        
        OPT  Lesson_04_Theory_06_Median  https://drive.google.com/file/d/1aF13Houc7svk0bh9jnVqDXiRU0MoFM9n/view?usp=sharing
OPT Lesson_04_Theory_07_Mode https://drive.google.com/file/d/13dwz6P-HNTZxR_OsfMLk-AV1_bP6-Ijr/view?usp=sharing
OPT Lesson_04_Theory_08_NaiveCovariance_Variance https://drive.google.com/file/d/10_lDzwO5BjUlA--rVPvvc_Wo8k_DFAz5/view?usp=sharing
Lesson_04_Theory_09_QuickIntroLinearRegression https://drive.google.com/file/d/1qiJ8l7TgiSuyh3omiK031tH0QPasxv0u/view?usp=sharing
        
        
        
        Computer applications, and language fundamentals for 
        statistical algos
    
Lesson_04_Apps_01_WorldWindowToDeviceVieportTransform https://drive.google.com/file/d/1jB602QC-CfCaZcMrNR793YWrZX2krYWR/view?usp=sharing
        
        Lesson_04_Apps_02_Transform_ManualMethodExample  https://drive.google.com/file/d/1U24jxMgfAhmDv8yoDIWMR0ErR4WX4Zf3/view?usp=sharing
        
        
        Lesson_04_Apps_03_InteractiveDeviceViewport https://drive.google.com/file/d/1UiSnUoZzwftjxmxynBq8QkLlZZr8hX0B/view?usp=sharing
OPT Lesson_04_Apps_04_InteractiveWorldWindow https://drive.google.com/file/d/1cZe_SsBeEB5G9osrz9v3obzJjIc7p_tu/view?usp=sharing
        OPT Lesson_04_Apps_05_TransformMatrix_GraphicsTransform https://drive.google.com/file/d/1MF1gZgR3WDWaC1FS3W7qMXWZP1fEexgR/view?usp=sharing
        
        OPT Lesson_04_Apps_06_WordCloudExample https://drive.google.com/file/d/1aJjume4UrVqfbrmAuqEdapnYcmhLgM4I/view?usp=sharing
HOMEWORK / ASSIGNMENTS (to be published by the student on the personal blog) : [DATE DUE: post your link within 24 Oct 2021, or -1 penalty on final grade may apply ]
        
        Researches about theory (R)
5_R. Explain a possibly unified conceptual framework to obtain all most common measures of central tendency and of dispersion using the concept of distance (or "premetric", or similarity in general). Discuss why it is useful to discuss these concepts introducing the notion of distance. Finally, point out the difference between the mathematical definition of "distance" and the properties of the "premetrics" useful in statistics, pointing out trhe most important distances, indexes and similarity measures used in statistics, data analysis and machine learning (such as for instance; Mahalanobis distance, Euclidean distance, Minkowski distance, Manhattan distance, Hamming distance, Cosine distance, Chebishev distance, Jaccard index, Haversine distance, Sørensen-Dice index, etc.).
        
        Applications / Practice (A)     [work 
        on this at least 30' a day, all days]
        6_A. (For this exercises use only 1 language 
        chosen between C# or VB.NET, according to your preference)
        
        
        Prepare separately the following charts: 1) Scatterplot, 2) 
        Histogram/Column chart [in the histogram, within each class interval, draw also 
        a vertical colored line where lies the true mean of the observations falling in 
        that class] and 3) Contingency table, using the graphics object and its methods 
        (Drawstring(), MeasureString(), DrawLine(), etc).
        Use them to represent 2 numerical variables that you select from a CSV file. In particular, 
        in the same picture box, you will make at least 2 separate charts: 1 dynamic 
        rectangle will contain the contingency table, and 1 rectangle (chart) will 
        contain the scatterplot, with the histograms/column charts and rug plots drawn 
        respectively near the two axis (and oriented accordingly).
        
        
        Researches about applications (RA)
4_RA. Do a personal research about the real world window to viewport transformation, and note separately the formulas and code which can be useful for your present and future applications.
        
        OPTIONAL applications 
        
        Translate the last exercises 6_A to web browser 
    applications, in plain javascript (no "third party libraries",  check also
    
    
    https://www.datatime.eu/public/cybersecurity/JSTutorial/ for some 
    progressive examples)  [+1 extra point for this optional part.].
    
        
        
        REFERENCES / SOURCES  / USEFUL LINKS:
        Additional useful readings on statistical theory:
    
        Summary stats https://en.wikipedia.org/wiki/Summary_statistics , https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php#:~:text=A%20measure%20of%20central%20tendency,also%20classed%20as%20summary%20statistics . , https://math.stackexchange.com/questions/2554243/understanding-the-mean-minimizes-the-mean-squared-error ,  https://stats.stackexchange.com/questions/200282/explaining-mean-median-mode-in-laymans-terms , http://dida.fauser.edu/calcolo/calcol3/valmedi.htm#:~:text=Una%20propriet%C3%A0%20caratteristica%20della%20mediana,scarti%20da%20qualunque%20altro%20valore
        
        Distances
        
        
        https://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html
        
        
        
        https://www.machinelearningplus.com/statistics/mahalanobis-distance/
        
        
        
        https://medium.com/@kunal_gohrani/different-types-of-distance-metrics-used-in-machine-learning-e9928c5e26c7
        
        
        
        https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa
        
        
        Dimensional analysis:  https://en.wikipedia.org/wiki/Dimensional_analysis
        Metrics: https://en.wikipedia.org/wiki/Metric_(mathematics)   https://en.wikipedia.org/wiki/Metric_(mathematics)#Premetrics
        Central tendency https://en.wikipedia.org/wiki/Central_tendency#Solutions_to_variational_problems
        
        Discrete distance https://en.wikipedia.org/wiki/Discrete_space
        
        Dispersion https://statistics.laerd.com/statistical-guides/measures-of-spread-range-quartiles.php
Variance https://en.wikipedia.org/wiki/Variance , https://stats.stackexchange.com/questions/239379/what-is-the-difference-between-mean-squared-deviation-and-variance , https://en.wikipedia.org/wiki/Squared_deviations_from_the_mean , https://math.stackexchange.com/questions/711135/derivation-of-runningonline-variances-formula
Variance algos https://it.wikipedia.org/wiki/Algoritmi_per_il_calcolo_della_varianza
        
        For applications
        
        Running Mean and Variance https://math.stackexchange.com/questions/20593/calculate-variance-from-a-stream-of-sample-values ,  https://www.johndcook.com/blog/standard_deviation/
        
        Transforms http://math.hws.edu/graphicsbook/c2/s3.html , https://en.wikipedia.org/wiki/Transformation_matrix#/media/File:2D_affine_transformation_matrix.svg
        
        Matrices https://docs.microsoft.com/en-us/dotnet/desktop/winforms/advanced/why-transformation-order-is-significant?view=netframeworkdesktop-4.8
http://csharphelper.com/blog/2015/12/draw-round-circles-in-a-scaled-coordinate-system-in-c/
Web scraping https://en.wikipedia.org/wiki/Web_scraping
        
        
        _______________________________________________________________________________________
        - 
        LESSON 05 -  [21 Oct 2021]
         
VIDEO LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, " OPT" denotes homework that can be skipped.
        
        
        Theory
OPT Lesson_05_Theory_01_VarianceDecomposition_CoefficientOfDetermination https://drive.google.com/file/d/1beOMXQbzW_f99vaEMQWU81qvN9XeWGwa/view?usp=sharing
        
        Lesson_05_Theory_02_MeasureTheory_ProbabilityAxioms https://drive.google.com/file/d/1MmJoRZKqXibg7vA3z7QWkmAUbBB7HVv7/view?usp=sharing
        
        
        Lesson_05_Theory_03_ParametricInference_InductiveReasoning https://drive.google.com/file/d/1yR3Rr4an2eQpCVFyxm91M_DYzgfSyAAu/view?usp=sharing
        
        Lesson_05_Theory_04_RoleOfProbabilityInStatistics https://drive.google.com/file/d/1DOyD8x4O2llZc_NqhGtFFEKrCPKMRTGV/view?usp=sharing
        
        
        Lesson_05_Theory_05_ProbabilitySpaceAndStatistics_RandomVariables  https://drive.google.com/file/d/1eQLx-K8chF3Mdrwu0mSTkl7wrQ7cT94S/view?usp=sharing
        
        
        Lesson_05_Theory_06_QuickIntroToLebesgueIntegralAndMeanVarianceOfRandomVariables https://drive.google.com/file/d/1AhsZ6prIqAHu06fx1l2Cxokq60EnQ7g_/view?usp=sharing    
        
        
        
        Computer applications, and language fundamentals for 
        statistical algos
        
        (expand your library collection by refining and adding new 
        functionalities for charting, eg. try 3D objects and shading)
HOMEWORK / ASSIGNMENTS (to be published by the student on the personal blog) : [DATE DUE: send your link within 31 Oct 2021, or -1 on final grade penalty may apply]
        
        Researches about theory (R)
6_R. Think and explain in your own words what is the role that probability plays in Statistics and the relation between the observed distribution and frequencies their "theoretical" counterparts. Do some practical examples where you explain how the concepts of an abstract probability space relate to more "concrete" and "real-world" objects when doing statistics.
7_R. Explain the Bayes Theorem and its key role in statistical induction. Describe the different paradigs that can be found within statistical inference (such as"bayesian", "frequentist" [Fisher, Neyman]).
        
        Applications / Practice (A)     [work 
        on this at least 30' a day, all days]
        7_A. Given 2 variables 
        taken from a CSV file compute and represent the statistical 
        regression lines (X to Y and viceversa) and the scatterplot.
        
        Optionally, represent also the histograms on the "sides" of the chart (one could 
        be draw vertically and the other one horizontally, in the position that you 
        prefer).
        
        [Remember that all our charts must alway be done within "dynamic viewports" 
        (movable/resizable rectangles). No third party libraries, to ensure ownership of 
        creative process. May choose the language you prefer.].
        
        
        Researches about applications (RA)
        5_RA. Do a web research about the various methods to 
        generate, from a Uniform([0,1)), all the most important random variables 
        (discrete and continuous). Collect all source code you think might be useful 
        code of such algorithms (keep credits and attributions wherever applicable), as 
        they will be useful for our next simulations.  
        
        
        https://en.wikipedia.org/wiki/List_of_probability_distributions
        
        https://www.cs.wm.edu/~va/software/park/park.html
        
        https://www.johndcook.com/blog/2010/05/03/c-random-number-generation-code/
        
        https://homeweb.csulb.edu/~tebert/teaching/lectures/552/variate/variate.pdf
        
        https://www.jstor.org/stable/1402590
        
        https://www.icosaedro.it/phplint/generating-statistical-distributions/index.html   
        etc...
    
        
        
        REFERENCES / SOURCES  / USEFUL LINKS:
        Additional useful readings on theory:
    
        Paradigms:
        
        https://degreesofbelief.roryquinn.com/statistics-bayesian-frequentist
        
        https://www.nhh.no/globalassets/departments/business-and-management-science/research/lillestol/statistical_inference.pdf
        
        https://faculty1.coloradocollege.edu/~sjanke/Slides/Bayes_SJ.pdf
        
        https://en.wikipedia.org/wiki/Frequentist_inference
        
        https://en.wikipedia.org/wiki/Bayesian_inference#In_frequentist_statistics_and_decision_theory
        
        Inductive reasoning ;https://en.wikipedia.org/wiki/Inductive_reasoning
        Statistical induction https://www.wikilectures.eu/w/Statistical_Induction_Principle#:~:text=Inductive%20statistics%20is%20way%20for,in%20a%20inductive%20way .
        Frequentist and Bayesian https://www.probabilisticworld.com/frequentist-bayesian-approaches-inferential-statistics/ , https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf , https://en.wikipedia.org/wiki/Frequentist_inference , https://en.wikipedia.org/wiki/Bayesian_inference , 
        
        Variance Decomposition https://murraylax.org/rtutorials/regression_anovatable.pdf
        Coefficient of Determination https://en.wikipedia.org/wiki/Coefficient_of_determination
        Correlation coefficient https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
        Cauchy Schwarz https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
        
        Mathematical stats https://en.wikipedia.org/wiki/Mathematical_statisticss
        Measure Theory https://terrytao.files.wordpress.com/2011/01/measure-book1.pdf , https://en.wikipedia.org/wiki/Measure_(mathematics )
        Measurable function https://en.wikipedia.org/wiki/Measurable_function
        Lebesgue measure https://en.wikipedia.org/wiki/Lebesgue_measure
        Borel Measure https://en.wikipedia.org/wiki/Borel_measure
        Measure space https://en.wikipedia.org/wiki/Measure_space
        Sigma algebra https://en.wikipedia.org/wiki/%CE%A3-algebra
        Probability space https://en.wikipedia.org/wiki/Probability_space ,  https://math.stackexchange.com/questions/3205017/what-is-the-space-of-random-variables , https://math.stackexchange.com/questions/18198/what-are-the-sample-spaces-when-talking-about-continuous-random-variables , https://stats.stackexchange.com/questions/264260/what-is-the-difference-between-sample-space-and-random-variable , https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_chap17.pdf
        Probability measure https://en.wikipedia.org/wiki/Probability_measure
        Random Variable https://en.wikipedia.org/wiki/Random_variable  
        pdf https://en.wikipedia.org/wiki/Probability_density_function
        cdf https://en.wikipedia.org/wiki/Cumulative_distribution_function
videos:
https://www.youtube.com/watch?v=ZJsOOCghQJ0 "Cumulative Distribution Function (1 of 3: Definition)"
         
        Lebesgue Stielties integral  https://en.wikipedia.org/wiki/Lebesgue_integration  , https://en.wikipedia.org/wiki/Lebesgue%E2%80%93Stieltjes_integration , https://matheducators.stackexchange.com/questions/5981/what-is-a-good-way-to-explain-the-lebesgue-integral-to-non-math-majors , https://www.whitman.edu/Documents/Academics/Mathematics/2017/Wang.pdf , http://www.math.nagoya-u.ac.jp/~richard/teaching/s2017/Nelson_2015.pdf ,   https://math.stackexchange.com/questions/1267330/on-the-horizontal-integration-of-the-lebesgue-integral
        Fubini-Tonelli https://en.wikipedia.org/wiki/Fubini%27s_theorem
        Layer cake representation https://en.wikipedia.org/wiki/Layer_cake_representation , https://math.stackexchange.com/questions/998633/how-is-fubinis-theorem-used-in-the-following-proof , https://math.stackexchange.com/questions/338275/proof-of-int-0-inftyptp-1-mu-xfx-geq-t-d-mut-int-0-inft
        Simple function https://math.stackexchange.com/questions/2481592/step-function-vs-simple-function
        
        Dirichlet https://en.wikipedia.org/wiki/Nowhere_continuous_function
        Random Variables, generation https://www.cse.wustl.edu/~jain/books/ftp/ch5f_slides.pdf , https://encyclopediaofmath.org/wiki/Generating_random_variables , https://web.mit.edu/urban_or_book/www/book/chapter7/7.1.3.html , https://towardsdatascience.com/how-to-generate-random-variables-from-scratch-no-library-used-4b71eb3c8dc7 , http://www.columbia.edu/~mh2078/MonteCarlo/MCS_Generate_RVars.pdf , http://www.stat.tamu.edu/~jnewton/604/chap3.pdf
        Inverse transform sampling  https://en.wikipedia.org/wiki/Inverse_transform_sampling
        Rejection sampling https://en.wikipedia.org/wiki/Rejection_sampling
        Ziggurat algo https://en.wikipedia.org/wiki/Ziggurat_algorithm   
        http://www.jstatsoft.org/v05/i08/paper , https://core.ac.uk/download/pdf/6287927.pdf
        Box Muller transform https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
        Other normal http://home.iitk.ac.in/~kundu/paper104.pdf
        Monte Carlo methods https://en.wikipedia.org/wiki/Monte_Carlo_method
        
        For applications
    
        Definite integral video https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/v/riemann-sums-and-integrals , https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/a/definite-integral-as-the-limit-of-a-riemann-sum
        
        
        https://mathinsight.org/calculating_area_under_curve_riemann_sums
        
        
        https://www.emathhelp.net/calculators/calculus-2/riemann-sum-calculator/
        
        https://en.wikipedia.org/wiki/Riemann_sum
        
        
        https://www.desmos.com/calculator/tgyr42ezjq?lang=it
        Running Regression https://www.johndcook.com/blog/running_regression/
        One pass skeweness and kurtosis https://www.johndcook.com/blog/skewness_kurtosis/
    
_______________________________________________________________________________________
        
    
        - 
        LESSON 06 -  [12 Nov 2020]
         
VIDEO LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, " OPT" denotes homework that can be 
        skipped.
        
        
        Theory
        Lesson_06_Theory_01_RecapAndProbabilityDistribution  https://drive.google.com/file/d/1_mIeSn8vJBh3u82JyjZmzVAi34EATop9/view?usp=sharing
        
        Lesson_06_Theory_02_SequencesOfRandomVariables_ConvergenceInDistribution  https://drive.google.com/file/d/1SZZflBa6ek20bxZeFAqph1JYg3hKbtHX/view?usp=sharing
        
        Lesson_06_Theory_03_ConvergenceInProbabilityAndQuickIntroToLLN  https://drive.google.com/file/d/1tbRiLN6w2RGg172IbcEdUzDsHOqX2Bj4/view?usp=sharing
        
        OPT (some 
        additional explanation for exercise 13_A) Lesson_06_Theory_04_ExerciseOnLLN  https://drive.google.com/file/d/1etyfP_jm5N3p8aX1qmjbLmJUVs7b9STT/view?usp=sharing
        
        Lesson_06_Theory_05_MeanVarianceOfSampleMean  https://drive.google.com/file/d/1XBSvmDylVTNpo_RG8vwuE8ouizRM1gCs/view?usp=sharing
        
        
        
        Computer applications, and language fundamentals for statistical algos
        
        (revise and refine your previous programs and libraries)
         
HOMEWORK / ASSIGNMENTS (to be published by the student on the personal blog) : [DATE DUE: send your link within 7 Nov 2021, or -1 on final grade penalty may apply]
        
        Researches about theory (R)
8_R.
        Do a research about the following topics:
        
        
        - The law of large numbers LLN, the various definitions of convergence
        
        - The convergence of the Binomial to the normal and Poisson distributions
        
        - The central limit theorem [in anticipation of a topic we will study later]
        
        
        
        Applications / Practice (A)     [work on this at least 
        30' a day, all days]
        8_A. Exercise (also partially described in video 04)
        
        Generate and represent m "sample paths" of n point each (m, n are program 
        parameters), where each point represents a pair of:
        
    
        time index t, and relative frequency of success f(t),
        
        
        where f(t) is the sum of 
        t Bernoulli random variables with distribution B(x, p) = p^x(1-p)^(1-x) 
        observed at the various times up to t: j=1, ..., t..
        
        At time n (last time) and one other chosen inner time 1<j<n (where j is a 
        user parameter) represent with a histogram the distribution of f(t).
        
        See 
        also what happens if you replace the relative frequency 
        f(t) with the absolute 
        frequency n(t) or by standard relative frequency: (f(t)-p) / 
        sqrt(p(1-p)/t) [ or some "normalized" sum of bernoulli r.v.'s, eg. n(t) 
        / Math.sqrt(t) ]. 
        
        
        Comment briefly 
        on the convergence results you see.
        
        
    
        
        (The general scheme of this exercise, will also be "reused" in next homeworks 
        where we will consider other more interesting stochastic processes.)
        
        
    (source: 
        homework screenshot by student Lorenzo Zara, year 2020)
        
        
        
        
        Researches about applications (RA)
        
        6_RA. Do a 
        web research about the various methods proposed to compute the running 
        median (one pass, online algorithms). 
        
        Store (cite all sources and attributions) the algorithm(s) that 
        you think is(are) a good candidate, explaining briefly how it works and possibly 
        try 
        a quick demo.
        
        
        
        REFERENCES / SOURCES  / USEFUL LINKS:
Additional useful readings on theory:
Probability distribution https://en.wikipedia.org/wiki/Probability_distribution , https://stats.stackexchange.com/questions/489948/difference-between-uniform-laws-of-large-numbers-and-law-of-large-numbers?rq=1 https://en.wikipedia.org/wiki/Probability_mass_function , https://en.wikipedia.org/wiki/Probability_density_function , https://en.wikipedia.org/wiki/Cumulative_distribution_function
        Convergence  https://www.youtube.com/watch?v=l_YZ096WH74 ,  https://www.youtube.com/watch?v=ZKqzA81Nz2Y    https://stats.stackexchange.com/questions/2230/convergence-in-probability-vs-almost-sure-convergence , https://math.stackexchange.com/questions/3776889/interpreting-almost-sure-convergence , https://stats.stackexchange.com/questions/141219/almost-sure-convergence-does-not-imply-complete-convergence, https://math.stackexchange.com/questions/2926296/weak-convergence-of-measures-implying-almost-sure-convergence-of-random-variable
        
        Variance of relative frequency https://math.stackexchange.com/questions/1526230/variance-of-relative-frequency#:~:text=If%20we%20perform%2010%20trials,1%E2%88%92p)%2F10.
    
LLN https://en.wikipedia.org/wiki/Law_of_large_numbers , https://stats.stackexchange.com/questions/47310/weak-law-of-large-numbers-redundant https://stats.stackexchange.com/questions/22557/central-limit-theorem-versus-law-of-large-numbers , https://stats.stackexchange.com/questions/45695/conditions-in-law-of-large-numbers?rq=1 , https://stats.stackexchange.com/questions/29882/when-does-the-law-of-large-numbers-fail?rq=1 , https://stats.stackexchange.com/questions/24562/why-law-of-large-numbers-does-not-apply-in-the-case-of-apple-share-price?rq=1
        
        For applications
    
Median https://stats.stackexchange.com/questions/134/algorithms-to-compute-the-running-median http://www.dsalgo.com/2013/02/RunningMedian.php.htmll https://www.cs.cornell.edu/courses/cs2110/2009su/Lectures/examples/MedianFinding.pdf , https://github.com/GuyKomari/Median-Online-Algorithm
_______________________________________________________________________________________
        
    
        - 
        LESSON 07 -  [4 Nov 2020]
         
VIDEO LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, "OPT" 
        denotes homework that can be skipped.
        
        
        Theory
Lesson_07_Theory_01_ConcentrationInequalities_Markov https://drive.google.com/file/d/1gnXs8gwUEt5GgNoxmjpFENY7w8SQHcx1/view?usp=sharing
Lesson_07_Theory_02_ConcentrationInequalities_Chebyshev_LLNProof https://drive.google.com/file/d/1QtYA2hgZLaaA3hZg_VL8Pl-U84MqK-CX/view?usp=sharing
OPT Lesson_07_Theory_03_AlmostSureConvergence_BorelCantelli https://drive.google.com/file/d/1Db4wEwHhgMae2BPJ5f049xLFNh2YLHkk/view?usp=sharing
Lesson_07_Theory_04_GlivenkoCantelli_UniformConvergenceOfEmpiricalCDF https://drive.google.com/file/d/1yIEmHhqe0h1i-nBg_vCcJ0yzSAjfav6a/view?usp=sharing
Lesson_07_Theory_05_Standardization_QuickIntroToCLT https://drive.google.com/file/d/1Oosog1d1O461OlK4mOwTisrUmR_HqrEs/view?usp=sharing
        
        
        
        Computer applications, and language fundamentals for statistical algos
        
        reorgarnize and clean up your previous code and applications
        
        
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: send your link within 14 Nov 2021, or -1 on final grade 
        penalty may apply]
        
        Researches about theory (R)
        9_R.  History and derivation of the normal distribution. Touch, at least, 
        the following three i mportant perspectives, putting them into an historical 
        context to understand how  the idea developed:
        
        1) as approximation of binomial (De Moivre)
        2) as error curve (Gauss)
        3) as limit of sum of independent r.v.'s (Laplace)
        
        some video sources:
        
        "The Evolution of the Normal Distribution" https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf
        "The Normal Distribution: A derivation from basic principles" https://www.alternatievewiskunde.nl/QED/normal.pdf
        "A Derivation of the Normal Distribution" https://web.sonoma.edu/users/w/wilsonst/papers/Normal/default.html
        
        https://math.stackexchange.com/questions/384893/how-was-the-normal-distribution-derived
        "Normal Distributions: The History of the Discovery of Normal Distributions" https://www.youtube.com/watch?v=BXof869EC68
        "Normal Distribution Example and History Part 1" https://www.youtube.com/watch?v=XUT5Oadidbw
        "History of the Normal Distribution" https://www.youtube.com/watch?v=-ftS9UqdA-g
        "Normal Distribution, Why is it "Normal"? " https://www.youtube.com/watch?v=nyibbuGFsr8
        "Normal distribution's probability density function derived in 5min" https://www.youtube.com/watch?v=ebewBjZmZTw
        "The Normal Distribution (1 of 3: Introductory definition)" https://www.youtube.com/watch?v=mHTp7azBhGs
        etc.
        
        Applications / Practice (A)     [work on this at least 
        30' a day, all days]
9_A_1. Create a simulation with graphics to convince yourself of the uniform convergence of the empirical CDF to the theoretical distribution (Glivenko-Cantelli theorem). You may use a simple random variable of your choice for such a demonstration.
        
        https://www.datatime.eu/public/cybersecurity/jsTutorial/22_GlivenkoCantelli.html
        
   
        9_A_2.  Generate sample paths of jump processes which at each time 
        considered t = 1, ..., n perform jumps computed as:
        
        
        -   σ R(t)  
        (and/or divide by sqrt(1/t) in case you want to make constant the variance at 
        each time by 
        "normalizing" the sum, or divide by sqrt(1/n) in order to obtain 
        standard deviation = σ at last time [the so called "scaling limit"])
        where R(t)  is a [-1,1] Rademacher random 
        variable (https://en.wikipedia.org/wiki/Rademacher_distribution).
        
        
        -  σ Z(t), where  Z(t) is a N(0,1) random 
        variable (https://en.wikipedia.org/wiki/Normal_distribution)
(and/or divide by sqrt(1/t) in case you want to make constant the variance at each time by "normalizing" the sum, or divide by sqrt(1/n) in order to obtain standard deviation = σ at last time )
and see what happens as n (simulation parameter, denoting the number of jumps, or subdivision in the "scaling limit") becomes larger.
        [As 
        before, at time n (last time) and one other chosen inner time 1<j<n (j is a 
        program parameter) create and represent with histogram the distribution of the 
        process ]
        
    
 
         
        Researches about applications (RA)
        7_RA Do a research about the random walk process and its properties. Compare 
        your finding with your applications drawing your personal conclusions. Explain 
        based on your exercise the beaviour of the distribution of the stochastic 
        process (check out "Donsker's invariance principle"). What are, in particular, 
        its mean and variance at time n ?
        
        
        REFERENCES / SOURCES  / USEFUL LINKS:
        Additional useful readings on theory:
    
        Probability: Theory and Examples, Rick Durrett  https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
        MIT Fundamentals of Probability  https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-436j-fundamentals-of-probability-fall-2018/lecture-notes/MIT6_436JF18_lec04.pdf
        
        Markov inequality https://en.wikipedia.org/wiki/Markov%27s_inequalityy
        Chebyshev inequality https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
        "Weak Law of Large Numbers" from MIT https://www.youtube.com/watch?v=3eiio3Tw7UQ
        Borel Cantelli https://en.wikipedia.org/wiki/Borel%E2%80%93Cantelli_lemma , https://stats.stackexchange.com/questions/486885/converge-of-scaled-bernoulli-random-process
        Simplest proof of strong LLN https://math.stackexchange.com/questions/3068125/proofing-the-strong-law-of-large-numbers
        
        https://math.stackexchange.com/questions/406226/central-limit-theorem-implies-law-of-large-numbers?rq=1
        Infinite Monkey https://en.wikipedia.org/wiki/Infinite_monkey_theorem
        Law of the unconscious statistician
        
        https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician
        
        Glivenko-Cantelli Theorem https://mathigon.org/course/intro-statistics/empirical-cdf-convergence , https://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/8notes.pdf , http://users.stat.umn.edu/~helwig/notes/den-Notes.pdf
        
        
        http://home.uchicago.edu/~amshaikh/webfiles/glivenko-cantelli_topics.pdf
For applications
        Random Walk https://en.wikipedia.org/wiki/Random_walk , http://www.math.caltech.edu/~2016-17/2term/ma003/Notes/Lecture16.pdf
        
        https://en.wikipedia.org/wiki/Rademacher_distribution
        
        _______________________________________________________________________________________
         LESSON 08 -  
        [11 Nov 2021]
         
STREAMING or VIDEOS LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, "OPT " 
        denotes homework that can be skipped.
        
        
        Theory
        "OPT" 
        Lesson_08_Theory_01_AlmostSurely_ProbabilityZero  https://drive.google.com/file/d/1WTh5uDhPCBHJOGiWrlCu-Zk1_F74W1r5/view?usp=sharing
        
        Lesson_08_Theory_02_OrderStatistics  https://drive.google.com/file/d/1M_llkCcuDl1sAx7EMgwVW7JkRO5HegIc/view?usp=sharing
        
        Lesson_08_Theory_03_Quantiles  https://drive.google.com/file/d/1ZvhQsMh7fRKUchi9-7aTAQuNxCnf9Fb9/view?usp=sharing
        
        Lesson_08_Theory_04_QuantileFunction_GeneralizedInverse  https://drive.google.com/file/d/1nzQjbU9l-parcpgGcP6yJ1mAIh_cDsiM/view?usp=sharing
        
        Lesson_08_Theory_05_OrderStatistics_Density https://drive.google.com/file/d/1jaxaDQRvuxvAdHkF-18lxx0Zn8Xz8KX_/view?usp=sharing
        
        Lesson_08_Theory_06_OrderStatistics_CDF https://drive.google.com/file/d/191v43xoMG5q05oAqamkwNXNEgVQm9fbH/view?usp=sharing
        
        Lesson_08_Theory_07_Ranks  https://drive.google.com/file/d/1U4v5nf1cGBFjjQhy8_5BcPj9CmL3J5a6/view?usp=sharing
    
        
        
        Computer applications, and language fundamentals for statistical algos
        
        [revise you stochastic process simulator and your CSV parser and statistics 
        application]
        
         
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: send your link within 21 Nov 2021, or -1 on final grade 
        penalty may apply]
        
        Researches about theory (R)
10_R. Distributions of the order statistics: look on the web for the most simple (but still rigorous) and clear derivations of the distributions, explaining in your own words the methods used.
        11_R. Do a research about the general correlation coefficient for ranks and the 
        most common indices that can be derived by it. Do one example of computation of 
        these correlation coefficients for ranks.
         
        
        
        Applications / Practice (A)     [work on this at least 30' a 
        day, all days]
        
    
        Represent also the distributions of the following quantities (and any other 
        quantity that you think of interest):
        - Distance (time elapsed) of individual jumps from the origin
        - Distance (time elapsed) between consecutive jumps (the 
        so-called "holding times")
        
        
        Researches about applications (RA)
        8_RA. Find out on the web what you have just generated in the previous 
        application. Can you find out about all the well known distributions that 
        "naturally arise" in this process ?
        
        Hints:  
        
        https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
        
        https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-262-discrete-stochastic-processes-spring-2011/course-notes/MIT6_262S11_chap02.pdf
        
        https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459
    
        Additional useful readings on theory:
    
Almost surely https://en.wikipedia.org/wiki/Almost_surely
        General correlation coefficient https://en.wikipedia.org/wiki/Rank_correlation
        Ranking https://en.wikipedia.org/wiki/Ranking#Ranking_in_statistics
        
        https://us.humankinetics.com/blogs/excerpt/what-is-rank-order-correlation
        
        videos:
        
        https://www.youtube.com/watch?v=DE58QuNKA-c   ("How To... 
        Calculate Spearman's Rank Correlation Coefficient (By Hand)")
        
        https://www.youtube.com/watch?v=gDNmhEBZAO8 ("Rank 
        Correlations: Spearman's and Kendall's Tau")
Quantile function
        Quantile function https://en.wikipedia.org/wiki/Quantile_function
        Generalized Inverse https://math.stackexchange.com/questions/1801362/generalized-inverse-of-a-function
        
        https://math.stackexchange.com/questions/210683/proof-that-quantile-function-characterizes-probability-distribution
        
        https://math.stackexchange.com/questions/3378799/is-the-sample-quantile-unbiased-for-the-true-quantile
        
        videos
        
        https://www.youtube.com/watch?v=ASHPdWCPBXE ("Cumulative 
        Distribution Function (3 of 3: Locating quantiles)")
        
        
        For applications
        
        https://stats.stackexchange.com/questions/325539/lambda-exponential-vs-poisson-interpretation/325662
        
        http://www.it.uu.se/edu/course/homepage/fussmobb/ht06/computing/labb5.pdf
        
        http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/Poisson/PoissonOld/poisson.shtml
        Jump process https://en.wikipedia.org/wiki/Jump_process
    
_______________________________________________________________________________________
        
        
        
        - LESSON 09 -  [18 Nov 2020]  
         
STREAMING or VIDEOS LESSONS:
        
        Note: "OPT"  
        indicates optional video material for extra help: it can be skipped. Same for 
        homework, "OPT " 
        denotes homework that can be skipped.
        
        
        Theory
        Lesson_09_Theory_01_StochasticProcessDefinition_DiscreteContinuousTimeState  https://drive.google.com/file/d/1O9-TeP8fUQcH1w2EUECBrZ2WYpsb1WP1/view?usp=sharing
        
        Lesson_09_Theory_02_StochasticProcess_SamplePaths https://drive.google.com/file/d/1jYeLdpVjdBOtja1-iD4WqoXsIfd0JApE/view?usp=sharing
        
        Lesson_09_Theory_03_StationaryIncrements https://drive.google.com/file/d/1ovXcMp5bdhz42S4MihP24KxfjHAtKkIH/view?usp=sharing
        
        Lesson_09_Theory_04_ContinuityInProbability https://drive.google.com/file/d/1P6uWx5RDhvOYyzBAygBvyekk3Ww4-1a6/view?usp=sharing
        
        Lesson_09_Theory_05_ContinuityAlmostSure https://drive.google.com/file/d/1JociclFbsDPeHc3vzzEEKMIL0hm9cIk_/view?usp=sharing
        
        Lesson_09_Theory_06_CADLAG_RightContinuousWithLeftLimit https://drive.google.com/file/d/1jhwEK0qhbw69a0yUv9h5nFZ1CGMyafpm/view?usp=sharing
        
        Lesson_09_Theory_07_LevyProcess https://drive.google.com/file/d/1jHN4BwKpw6kKkvB88s-BzeFiNzoPc4jE/view?usp=sharing
        
        Lesson_09_Theory_08_BrownianMotion https://drive.google.com/file/d/14aOEJUuFxMGWlbkZFt5DpO7fUaCF06m8/view?usp=sharing
        
        
        Computer applications, and language fundamentals for statistical algos
        
        [revise and refine your stat application and your stochastic process simulator]
         
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: send your link within 28 Nov 2021, or -1 on final grade 
        penalty may apply]
        
        Researches about theory (R)
12_R.What is the "Brownian motion" and what is a Wiener process. History, importance, definition and applications (Bachelier, Wiener, Einstein, ...):
13_R. An "analog" of the CLT for stochastic process: the standard Wiener process as "scaling limit" of a random walk and the functional CLT (Donsker theorem) or invariance principle. Explain the intuitive meaning of this result and how you have already illustrated the result in your homework.
        Set, collection, class, family, sequence difference https://math.stackexchange.com/questions/223405/can-elements-in-a-set-be-duplicated , https://stackoverflow.com/questions/821079/when-to-use-set-vs-collection#:~:text=The%20practical%20difference%20is%20that,unordered%2C%20while%20Collection%20does%20not . 
        , https://en.wikipedia.org/wiki/Partially_ordered_set , https://www.samuel-drapeau.info/math/2015/10/04/family-vs-collection/#:~:text=Given%20a%20set%20X%2C%20a,of%20elements%20is%20not%20possible . 
        , https://en.wikipedia.org/wiki/Subset , https://www.stat.auckland.ac.nz/~fewster/325/notes/ch1annotated.pdf , https://math.stackexchange.com/questions/604305/what-is-difference-between-stochastic-process-and-a-sequence-of-random-variables , https://math.stackexchange.com/questions/1593384/what-is-the-difference-between-an-indexed-family-and-a-sequence/1593393#:~:text=Formally%2C%20this%20sequence%20is%20a,I%20can%20be%20any%20set.&text=Here%20you%20can%20see%20that,the%20set%20of%20positive%20integers . 
        , https://mathworld.wolfram.com/Collection.html , https://math.stackexchange.com/questions/1601545/whats-the-definition-of-a-collection , https://math.stackexchange.com/questions/172966/what-are-the-differences-between-class-set-family-and-collection . https://en.wikipedia.org/wiki/Function_(mathematics ) 
        , https://en.wikipedia.org/wiki/Binary_relation , https://en.wikipedia.org/wiki/Cartesian_product
        
        Discrete and continuous time https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time
        Discrete and continuous state space https://www.researchgate.net/figure/Discrete-vs-continuous-time-and-discrete-vs-continuous-state-space-models_fig1_220053939   https://en.wikipedia.org/wiki/Stochastic_process
        Stationary Independent Increments https://stats.stackexchange.com/questions/476740/what-is-a-random-process-with-stationary-independent-increments
        Independent increments of Poisson process https://stats.stackexchange.com/questions/69498/how-to-prove-the-independent-and-stationary-increment-of-a-poisson-process
        Continuity https://www.stat.cmu.edu/~cshalizi/754/notes/lecture-07.pdf ,  https://en.wikipedia.org/wiki/Continuous_stochastic_process, https://en.wikipedia.org/wiki/Sample-continuous_process#:~:text=In%20mathematics%2C%20a%20sample%2Dcontinuous,are%20almost%20surely%20continuous%20functions.
        Levy Process https://en.wikipedia.org/wiki/L%C3%A9vy_process
        Wiener Process, Brownian Motion http://galton.uchicago.edu/~lalley/Courses/313/WienerProcess.pdf , 
        
        
        https://galton.uchicago.edu/~lalley/Courses/313/BrownianMotionCurrent.pdf
      
        
        http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Dahl.pdf , https://www.ge.infn.it/~zanghi/FS/BrownTEXT.pdf
        Ito integral
        
        https://www.ie.bilkent.edu.tr/~mustafap/courses/TBII.pdf
        
        Properties: https://www.math-berlin.de/images/stories/lecnotes_moerters.pdf
        
        Non differentiability of BM https://quant.stackexchange.com/questions/10861/how-can-the-wiener-process-be-nowhere-differentiable-but-still-continuous
        Diffusion process s https://en.wikipedia.org/wiki/Diffusion_
        Kolmogorov equations https://en.wikipedia.org/wiki/Kolmogorov_equations , https://en.wikipedia.org/wiki/Kolmogorov_equations_(Markov_jump_process ,  https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
        Donsker theorem (functional central limit theorem) https://en.wikipedia.org/wiki/Donsker%27s_theorem , https://encyclopediaofmath.org/wiki/Donsker_invariance_principle
______________________________________________________________________________________
        
    
        - 
        LESSON 10 -  [2 Dic 2020]  
         
STREAMING or VIDEOS LESSONS:
        
        
        
        Theory
        Lesson_10_Theory_01_QuickIntroToSDE  https://drive.google.com/file/d/1maWgfMHjUMtoK2aAORZHsoHE5ix4SKWy/view?usp=sharing
        
        Lesson_10_Theory_02_GeometricBrownianMotionSDE https://drive.google.com/file/d/1dNFgsipYz9KVhHs7h7zUk_WDwIPWSoWC/view?usp=sharing
        
        Lesson_10_Theory_03_QuickIntroToSolutionOfSDE_1 https://drive.google.com/file/d/1cY6VCO-7-s8xieKRh_OA0-Ven_fOclG9/view?usp=sharing
        
        Lesson_10_Theory_04_QuickIntroToSolutionOfSDE_2 https://drive.google.com/file/d/1whpVDpOYSYypoGGki_3BxHbN-bF3TQ1s/view?usp=sharing
        
        Lesson_10_Theory_05_SolutionForStandardBrownianMotion https://drive.google.com/file/d/1nlMSkhVJmvW41W4RshQi8sXHs696Cu5c/view?usp=sharing
        
        Lesson_10_Theory_06_SolutionForGeneralBrownianMotion  https://drive.google.com/file/d/1WjZ_64zT2EyScoQkWZIsQfufSyjEtful/view?usp=sharing
        Lesson_10_Theory_07_Ornstein_Uhlenbeck_VasicekSDE https://drive.google.com/file/d/1bLByibiq20gza6WFNqygSHo0QiB3g4nh/view?usp=sharing
        
        Lesson_10_Theory_08_Euler_Maruyama_Method https://drive.google.com/file/d/1XJkfymX26o_yK7AdVaGnS15q5RSdFSY0/view?usp=sharing
        
        
        Computer applications, and language fundamentals for statistical algos
        
        [revise and refine your applications and libraries, complete the mini thesis]
         
        HOMEWORK / ASSIGNMENTS (to be published by the student on the personal  
        blog) :  [DATE DUE: send your link within 16 Dec 2020, or -1 on final grade 
        penalty may apply]
        
        Researches about theory (R)
- LESSON 11 - [9 Dic 2020]
[Skipped on students' request, to allow preparation for exam and completion of projects]
FINAL EXAM
Oral part: your blog contents
        Written part: this year, instead of 2 midterms, we will simplify the procedure.
        
        Each student 
        will instead produce a detailed "mini thesis" on 1 topic chosen from the following 
        list:
        Collect all possible material from web sources about one single specific topic, 
        carefully indicating all sources and attributions. 
        
        Your “creativity” must be 
        directed not in “ creating” anything “new”, but in understanding, organizing the material in 
        the most logic and understandable way, paying attention on the math proofs and 
        details. Maximize simplicity and rigour at the same time, whenever possible.
        
    
        
        Make sure to include:
        
        1. Historical fact and motivation
2. Intuition
3. Full math details
4. Whatever additional material: demo, video, source code
        
        (Make sure you check all main web sources and Q&A sites (YouTube, Khan academy, 
        wikipedia, wikidata, wikimedia commons, wikisource, stackexchange, quora, 
        reddit, ... specialized articles and sites, and quote all sources with the 
        respective links ...)
        Topics:
        
        
        
        1. Normal: history, motivation, all proofs, all most important “derived” distributions (chi 
        square, F Fisher, T Student) 
        
        
        2. Online algorithms (mean, variance, median, …): all details about numerical 
        stability, floating point issues, etc.
        
        
        
        3. Lebesgue-Stieltjes integral: history, motivation, intuition, usage in probability theory, 
        all the math details 
        
        
        4. Central limit theorem: history, motivation, intuition, all the math details
        
        
        
        5. Arithmetic Brownian Motion: history, motivation, intuition, usage, full math details 
        about all most important results 
        
        
        6. Geometric Brownian Motion: history, motivation, intuition, usage, full math details about 
        all most important results
        
        7. Functional central limit theorem (invariance principle or Donsker’s theorem): 
        history, motivation, intuition, full math details 
        
        
        8. Itô integral (Itô calculus): 
        history, motivation, intuition, full math details about 
        all most important results
    
    Final exam submission instructions:
    
    
    
    1) Make sure you book the exam on Infostud
    
    2) Send the following material at 
    statisticssapienza@gmail.com in 1 unique email, before the official exam 
    date (at least 3-7 days before)
        
        
        -1 name, ID
        
        -2 your "mini thesis" (a compressed file with a word doc): if you cannot send 
        it, just include a link for download
        -3 Your blog link 
        
        -4 number of "discontinuity penalties" (homeworks not handed on time) 
        accumulated, if any
        
       -5 brief "defense" of your work and study during the course
        
        -6 your final proposed grade (possibly subtract "penalties", if any), based on 
        your perception of your performance with possible motivation
        
        -7 optional. Two words on: How did you find this course ? What did you like and 
        how would you improve it ??
        
        
       To speed things up, given the large number of students, if your grade proposal 
        will appear comparatively fair - given your researches online and your final 
        mini thesis - I will accept direcly that on the oral exam, otherwise we will go 
        through a more detailed examination for accurate assessment. (The oral exam will 
        be carried out in any case.)
        
        
        When ready, send the email with the listed material and we will make an 
        appointment to do thehe oral 
        exam
        
        
        
        [A word of caution (just in case):):
        
        1) If material are essentially identical, in the sense that apart superficial 
        camuflages, they are obviously from the "same hand", they will all be nullified.
        
        2) Please, do not book for the exam if you are not adequately prepared. For an 
        instructor, there are few things less more irritating than students "trying" to 
        pass exams without sufficient preparation or, even worse, trying to cheat using 
        work done by others.]
________________________________________
    
      Useful general purpose free tools 
      
      
      Visual Studio (IDE)  
      https://visualstudio.microsoft.com/it/downloads/
       
      https://visualstudio.microsoft.com/it/vs/older-downloads/ (include C# and VB.NET)
      Video Player VLC (video player) 
       
      https://www.videolan.org/vlc/download-windows.it.html
      Notepad++ (edit CSV data files) 
       
      https://notepad-plus-plus.org/downloads/
      OBS Studio, open broadcaster software (to record video with screen and audio/cam)  
       https://obsproject.com/
      Autodesk SketchBook (to make drawings) 
       https://sketchbook.com/
      MP4Tools (simple mp4 cut/join) 
       https://www.mp4joiner.org/en/
JavaScript Tutorial for students https://www.datatime.eu/public/cybersecurity/jsTutorial/
        
      
        
      
      Visual studio code  
      
      https://code.visualstudio.com/   
      [free]
      WebStorm (Web dev)
        [not free] 
      
      
      https://www.jetbrains.com/webstorm/promo/?source=google&medium=cpc&campaign=9641686227&gclid=CjwKCAjwtfqKBhBoEiwAZuesiB05XZrJPP0mypXfXzxuRqaqbANGtnp9o_BSQ_t3bnl14aBGbRbDMBoCfmsQAvD_BwE
      
  
      HTML Corrector:  
      https://www.htmlcorrector.com/
    
      HTML Validator:  
      https://www.freeformatter.com/html-validator.html
    
      Spell check:  
      https://spellcheckplus.com/